Three new upper bounds on the chromatic number - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2011

Three new upper bounds on the chromatic number

Maria Soto
  • Fonction : Auteur correspondant
  • PersonId : 931853

Connectez-vous pour contacter l'auteur
André Rossi
Marc Sevaux

Résumé

This paper introduces three new upper bounds on the chromatic number, without making any assumptions on the graph structure. The first one, ξ, is based on the number of edges and nodes, and is to be applied to any connected component of the graph, whereas ζ and η are based on the degree of the nodes in the graph. The computation complexity of the three-bound computation is assessed. Theoretical and computational comparisons are also made with five well-known bounds from the literature, which demonstrate the superiority of the new upper bounds.

Dates et versions

hal-00648347 , version 1 (05-12-2011)

Identifiants

Citer

Maria Soto, André Rossi, Marc Sevaux. Three new upper bounds on the chromatic number. Discrete Applied Mathematics, 2011, 159 (18), pp.2281-2289. ⟨10.1016/j.dam.2011.08.005⟩. ⟨hal-00648347⟩
92 Consultations
0 Téléchargements

Altmetric

Partager

More