Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters - Archive ouverte HAL
Article Dans Une Revue PLoS ONE Année : 2011

Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

Résumé

In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception-action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action-Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments.

Domaines

Informatique
Fichier principal
Vignette du fichier
gilet11.pdf (1.09 Mo) Télécharger le fichier
gilet11s.pdf (62.74 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00645868 , version 1 (28-11-2011)

Identifiants

Citer

Estelle Gilet, Julien Diard, Pierre Bessiere. Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters. PLoS ONE, 2011, 6 (6), pp.e20387. ⟨10.1371/journal.pone.0020387⟩. ⟨hal-00645868⟩
319 Consultations
273 Téléchargements

Altmetric

Partager

More