Appendix S1: Activation or deactivation of submodels: the Bayesian switch

Let A and B be probabilistic variables that share the same domain \mathcal{D}. Let λ be a binary variable, taking 0 or 1 values. We show here how λ can be used as a "probabilistic switch" between variables A and B.

We define the joint probability distribution as follows:

$$
P(A B \lambda)=P(A) P(B) P(\lambda \mid A B) .
$$

The terms $P(A)$ and $P(B)$ can be arbitrarily defined, and $P(\lambda \mid A B)$ is defined by:

$$
P([\lambda=1] \mid[A=a][B=b])=\left\{\begin{array}{l}
1 \text { if } a=b \\
0 \text { otherwise }
\end{array}\right.
$$

Firstly, consider $P([A=a])$. It can be trivially shown that it is simply $P(A)$ as defined in the model. By assumption, it is thus independent of $P(B)$.

Secondly, consider $P([A=a] \mid[\lambda=1])$:

$$
\begin{aligned}
& P([A=a] \mid[\lambda=1]) \\
& \quad=\frac{P([A=a][\lambda=1])}{P([\lambda=1]} \\
& \quad \propto \sum_{B} P([A=a]) P(B) P([\lambda=1] \mid[A=a] B) .
\end{aligned}
$$

In the above summation, there is a single value of B for which $P([\lambda=1] \mid[A=a] B)$ is not zero: when $B=a$. Therefore the summation collapses:

$$
\begin{aligned}
& P([A=a] \mid[\lambda=1]) \\
& \quad \propto \quad P([A=a]) P([B=a]) P([\lambda=1] \mid[A=a][B=a]) \\
& \quad \propto \quad P([A=a]) P([B=a])
\end{aligned}
$$

Therefore, $P([A=a] \mid[\lambda=1])$ is not independent of $P(B)$, contrary to $P([A=a])$. When λ is specified in the right-hand side of the computed term, B is forced to take the value taken by A.

In this manner, λ can be used as a switch. When we want the submodels about A and B to be disconnected, λ is not specifed; from the point of view of B, A is deactivated. On the other hand, if we want submodel A to influence submodel B, we specify $\lambda=1$ in the questions we compute, and both submodels are activated.

