Six Degrees-of-Freedom Haptic Interaction with Fluids
Résumé
In this work, we propose a novel approach that allows real-time six Degrees of Freedom (DoF) haptic interaction with fluids of variable viscosity. Our haptic rendering technique, based on a Smoothed-Particle Hydrodynamics physical model, provides a realistic haptic feedback through physically based forces. 6DoF haptic interaction with fluids is made possible thanks to a new coupling scheme and a unified particle model, allowing the use of arbitrary-shaped rigid bodies. Particularly, fluid containers can be created to hold fluid and hence transmit to the user force feedback coming from fluid stirring, pouring, shaking, and scooping, to name a few. In addition, we adapted an existing visual rendering algorithm to meet the frame rate requirements of the haptic algorithms. We evaluate and illustrate the main features of our approach through different scenarios, highlighting the 6DoF haptic feedback and the use of containers.
Origine | Fichiers produits par l'(les) auteur(s) |
---|