A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations
Résumé
In this note we study the generalized 2D Zakharov-Kuznetsov equations $\partial_tu+\Delta\partial_xu+u^k\partial_xu=0$ for $k\ge 2$. By an iterative method we prove the local well-posedness of these equations in the Sobolev spaces $H^s(\mathbb{R}^2)$ for $s>1/4$ if $k=2$, $s>5/12$ if $k=3$ and $s>1-2/k$ if $k\ge 4$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...