H/α Unsupervised Classification for Highly Textured Polinsar Images using Information Geometry of Covariance Matrices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

H/α Unsupervised Classification for Highly Textured Polinsar Images using Information Geometry of Covariance Matrices

Résumé

We discuss in the paper the use of the Riemannian mean given by the differential geometric tools. This geometric mean is used in this paper for computing the class centers in the polarimetric H/α unsupervised classification process. We show that the class centers remain more stable during the iteration process, leading to a different interpretation of the H/α /A classification. This technique can be applied both on classical Sample Covariance Matrix and on Fixed Point covariance matrices. Used jointly with the Fixed Point covariance matrix estimate, this technique can give more robust results when dealing with high resolution and highly textured polarimetric SAR images classification.
Fichier principal
Vignette du fichier
Full_paper_Polinsar_2011.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00640761 , version 1 (14-11-2011)

Identifiants

  • HAL Id : hal-00640761 , version 1

Citer

Pierre Formont, Jean-Philippe Ovarlez, Frédéric Pascal, Gabriel Vasile, Laurent Ferro-Famil. H/α Unsupervised Classification for Highly Textured Polinsar Images using Information Geometry of Covariance Matrices. POLinSAR 2011 - 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Jan 2011, Frascati, Italy. 5 p. ⟨hal-00640761⟩
1113 Consultations
128 Téléchargements

Partager

More