Lifshitz tails for matrix-valued Anderson models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Lifshitz tails for matrix-valued Anderson models

Résumé

This paper is devoted to the study of Lifshitz tails for a continuous matrix-valued Anderson-type model $H_{\omega}$ acting on $L^2(\R^d)\otimes \C^{D}$, for arbitrary $d\geq 1$ and $D\geq 1$. We prove that the integrated density of states of $H_{\omega}$ has a Lifshitz behavior at the bottom of the spectrum. We obtain a Lifshitz exponent equal to $-d/2$ and this exponent is independent of $D$. It shows that the behaviour of the integrated density of states at the bottom of the spectrum of a quasi-d-dimensional Anderson model is the same as its behaviour for a d-dimensional Anderson model.
Fichier principal
Vignette du fichier
Boumaza-Najar_LifschitzMatrix_HAL.pdf (233.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00640591 , version 1 (13-11-2011)
hal-00640591 , version 2 (20-10-2013)

Identifiants

Citer

Hakim Boumaza, Hatem Najar. Lifshitz tails for matrix-valued Anderson models. 2011. ⟨hal-00640591v1⟩
327 Consultations
110 Téléchargements

Altmetric

Partager

More