A Bayesian marked point process for object detection. Application to MUSE hyperspectral data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

A Bayesian marked point process for object detection. Application to MUSE hyperspectral data

Résumé

Marked point processes have received a great attention in the re- cent years, for their ability to extract objects in large data sets as those obtained in biological studies or hyperspectral remote sens- ing frameworks. This paper focuses on an original Bayesian point process estimation for the detection of galaxies from the hyperspec- tral data 'cubes' provided by the Multi Unit Spectroscopic Explorer (MUSE) instrument. It is shown that this approach allows to obtain a synthetic representation of the detection problem and circumvent the computational complexity inherent to high dimensional pixel based approaches. The reversible jump Monte Carlo Markov Chain imple- mented to sample the parameters is detailed, and the results obtained on benchmark data mimicking the real instrument are provided.
Fichier principal
Vignette du fichier
icassp_2011_final.pdf (151.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00639711 , version 1 (09-11-2011)

Identifiants

  • HAL Id : hal-00639711 , version 1

Citer

Florent Chatelain, Aude Costard, Olivier J.J. Michel. A Bayesian marked point process for object detection. Application to MUSE hyperspectral data. ICASSP 2011 - IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, Prague, Czech Republic. pp.3628-­3631. ⟨hal-00639711⟩
235 Consultations
152 Téléchargements

Partager

More