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ABSTRACT

Marked point processes have received a great attention in the re-

cent years, for their ability to extract objects in large data sets as

those obtained in biological studies or hyperspectral remote sens-

ing frameworks. This paper focuses on an original Bayesian point

process estimation for the detection of galaxies from the hyperspec-

tral data ’cubes’ provided by the Multi Unit Spectroscopic Explorer

(MUSE) instrument. It is shown that this approach allows to obtain a

synthetic representation of the detection problem and circumvent the

computational complexity inherent to high dimensional pixel based

approaches. The reversible jump Monte Carlo Markov Chain imple-

mented to sample the parameters is detailed, and the results obtained

on benchmark data mimicking the real instrument are provided.

Index Terms— Point Processes, Hierarchical Bayesian Models,

Hyperspectral Data, Galaxy Detection.

1. INTRODUCTION, DATA DESCRIPTION

The overwhelming growth in size and complexity of experimental

data from research fields such as biology, remote sensing and as-

trophysics requires to develop new approaches to warrant optimal

scientific exploitation of the instrument. This paper focuses on the

automated object detection task, formulated in a Bayesian marked

point process detection framework.

A marked point process is a stochastic process whose realizations

are random configurations of objects. Thus an object is modeled as

a point, associated with some marks that accounts for geometrical or

spectral features. These processes yield a natural sparse representa-

tion for a configuration of a random number of objects in an image.

The number of parameters actually depends on the effective num-

ber of objects in the current configuration, allowing one to obtain

a synthetic representation of the problem. It appears to be a useful

tool to circumvent the computational complexity due to high dimen-

sional space problems inherent to pixel-wise approaches. These pro-

cesses have received a great attention during the last several years

for object extraction from biological [1] or remotely sensed images

(see e.g. [2, 3]). A known drawback of previously developed ap-

proaches resides in their high sensitivity to some hyper-parameters

that controls the prior and data energy of the process. Consequently,

these latter parameters are customary tuned by hand, to some data

specific value. The Bayesian approach proposed in this paper over-

comes this difficulty by introducing non-informative priors, possibly
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with a second level of hierarchy within the Bayesian model. It re-

sults in a so-called hierarchical Bayesian model. Finally, the poste-

rior distribution is sampled using a Reversible Jump Markov chain

Monte Carlo (RJMCMC) method. This hierarchical Bayesian model

leads to a general and robust algorithm where the hyperparameters

are estimated due to a full data-driven criterion [4]. This is, to our

knowledge, the first time that a fully Bayesian marked point process

is developed for object recognition. Moreover, for the purpose of

galaxy detection in the MUSE data cube, the proposed model is de-

signed to handle the large number of monochromatic images (data

cube slices).

The Multi Unit Spectroscopic Explorer (MUSE) project (see [5])

aims to provide astronomers with a new generation of optical in-

strument, capable of simultaneously imaging the sky (in 2D) and

measuring the optical spectra of the light received at a given position

on the sky. MUSE is planned to be installed on the VLT and to be

operational in 2012, and its performances are expected to allow ob-

servation of far galaxies up to 100 times fainter than those presently

detectable. MUSE will deliver a 3D ’data-cube’ made of a stack of

images recorded at 3578 different wavelengths over the range 465-

930 nm. Each ’monochromatic’ image represents a field of view of

60X60 arcsec, recorded with a spatial sampling of 0.2 arcsec 0.2 arc-

sec. Each record results in a data cube of size 1570 MB encoding

3578 images of 300X300 pixels, possibly containing thousands of

objects (galaxies) existing over different subsets of wavelengths!

In the literature [6, 7], the galaxy morphology is classically assumed

to result from elliptical components. Following this assumption, in

this paper, a galaxy is approximated by an elliptic object. The marks

correspond to the ellipse parameters and to the intensity vector of

the galaxy. Galaxy detection is then performed jointly on the differ-

ent slices of the hyperspectral cube. Throughout this study, we an-

alyze simulation data mimicking the expected hyperspectral record

(in terms of SNR, density of objects, spectral content,...), as provided

by CRAL [8] within the ANR Dahlia [9] collaborative project.

This paper is organized as follows. The Bayesian model is described

in section 2. The RJMCMC sampler is derived in section 3. Simula-

tions conducted on the MUSE cube are reported in section 4. Con-

clusions are drawn in section 5.

2. BAYESIAN MODEL

Let y be a M × 1 vector corresponding to a vectorized image (at

a given wavelength λ) counting M pixels, while u = {u1, u2, . . .}
denotes a configuration of objects. Finally, n(u) denotes the number

of objects ui in the configuration u.



2.1. Monochromatic Observation model

y = s + 1m + n,

where m > 0 is the mean of the astrophysical background intensity,

1 = (1 . . . 1)T is the M ×1 matrix with unit elements, n is a M ×1
centered white noise Gaussian vector with component variance σ2,

and s is a M × 1 vector that models the device response to a galaxy

configuration u in the observed scene. The signal s is expressed as:

s =

n(u)
X

i=1

wixi,

where xi stands for the the response of imaging device to an ellipse

ui with unitary intensity ; wi is the intensity associated with ui. An

equivalent matrix formulation yields:

s = Xw,

where X =
ˆ

x1 . . . xn(u)

˜

∈ R
M×n(u) and

w = (w1, . . . , wn(u))
T ∈ R

n(u).

2.2. Hyperspectral Likelihood

From the observation and noise models above, under the assump-

tion that different spectral bands or slices yield independent obser-

vations, the hyperspectral likelihood is obtained as the product of the

monochromatic (at λ) likelihoods

f(yλ|u, mλ, σ2
λ) =

„

1

2πσ2
λ

«

M
2

exp

„

−ZT
λ Zλ

2σ2
λ

«

, (1)

where Zλ = yλ −1mλ −Xλwλ, and all parameters but u depend

on λ. This stresses on the fact that a configuration is shared by all

slices (wavelengths) in a given data cube. In the remainder of the

paper, λ will be omitted for sake of simplicity. Although the inde-

pendence of the observations from different slices may seem over-

simplified, this holds for sufficiently separated (in the wavelength

domain) slices. Note that the model can be extented to possible spec-

tral correlations due to the spectral point spread function. However

this point is not tackled in this paper.

2.3. Parameter and Hyperparameter Priors

A noninformative improper prior is chosen for the pair of parameters

(m, σ2):

p(m, σ2) =
1

σ2
1(0,+∞)2(m, σ2).

A Gaussian prior is introduced for the intensity vector:

w|u, σ2, η2 ∼ N
“

0, η2σ2(XT
X)−1

”

,

Note that all these priors satisfy a principle of invariance. Any affine

transformation of the measurements y, or of the signal basis X , will

transform the posterior distribution, and thus our inferences, in the

same way. Moreover, the hyperparameter η2 represents the signal-

to-noise ratio (SNR) of the observed scene since it is straightforward

to show that η2 = E[sT
s]

E[nT
n]

.

Finally, a Bayesian hierarchical structure is proposed, by intro-

ducing a hyperprior distribution for the hyperparameter η2. This hy-

perparameter is modeled as a conjugate inverse-Gamma distribution

IG(α0, α1/2):

p(η2) ∝
„

1

η2

«α0+1

e
−

„

α1
2η2

«

.

The parameters α0 and α1 are chosen sufficiently small to obtain a

vague prior (basically, α0 = α1 = 10−3).

2.4. Posterior distribution conditionally on a galaxy configura-

tion u

The resulting posterior distribution, conditionally on a configuration

u, is obtained as:

p(w, m, σ2, η2|u, y) ∝
„

1

2πσ2

«

M+n(u)
2

+1
1

η2

n(u)
2

× exp

 

−
ZT Z + 1

η2 wT XT Xw

2σ2

!

×
exp(− α1

2η2 )

(η2)α0+1
1(0,+∞)2(m, σ2)

(2)

Based on (2), one can see that the conditional posterior distribu-

tion of the intensity vector w given m, σ2, η2, u, y is Gaussian with

mean and covariance matrix respectively:

µ =

„

1 +
1

η2

«

−1

(XT
X)−1

h

X
T (y − 1m)

i

,

Σ = σ2 η2

1 + η2

“

X
T
X
”

−1

.

It allows one to integrate out the parameter vector w to obtain the

following marginalized posterior distribution:

p(m, σ2, η2|y, u) ∝
„

1

σ2

«

M
2

+1„
1

1 + η2

«

n(u)
2

× e
−

(y−1m)T
„

I−

„

η2

1+η2

«

X(XT X)−1XT
«

(y−1m)

2σ2

×
exp(− α1

2η2 )

(η2)α0+1
1(0,+∞)2(m, σ2).

(3)

2.5. Priors on the configuration

The galaxy configuration u = {u1, u2, . . .} is modeled as a marked

point process (see [10] for more details about point processes). Each

marked point ui corresponds to an ellipse ui = (pi, ai, bi, ωi),

where pi is the center, ai, bi denotes respectively the first and second

axis values and ωi is the orientation of the first axis. This process is

defined by its density with respect to the measure µ(·) of a unitary

Poisson process defined on W × K, where W ⊂ R
2 is the coordi-

nate space of the observed scene and K = [rmin, rmax]×[rmin, rmax]×
[0, π[ is the mark space. In order to regularize the solution and to

avoid multiple detections, a hard core penalization is introduced to

prevent overlapping. Let

r(ui, uj) = max

 P

s∈ui∩uj
xi,s

P

s∈ui
xi,s

,

P

s∈ui∩uj
xi,s

P

s∈uj
xi,s

!

∈ [0, 1]



be the overlapping ratio between the responses of two objects ui and

uj , where xi,s stands for the object response xi evaluated at location

s. It yields the following hard core density

h(u) =

(

0 if it exists i 6= j such that r(ui, uj) > t,

1 otherwise,

where the threshold t is set to the deterministic value t = 1/2.

Finally, the number of galaxy n(u) is governed a priori by a

Poisson distribution with mean β. A second level of hierarchy is

introduced with the choice of a Jeffreys noninformative hyperprior

on this hyperparameter: p(β) = 1/
√

β. The resulting prior on the

configuration is obtained as:

p(u, β) ∝ βn(u)−1/2e−βh(u)µ(u).

Integrating out β, it yields the following marginalized prior:

p(u) ∝ Γ (n(u) + 1/2) h(u)µ(u), (4)

Γ(a) =
R +∞

0
ta−1e−tdt being the classical Gamma function.

2.6. Posterior distribution

The joint posterior distribution on both the configuration u and the

parameter vector θ = (m, σ2, η) expresses now as:

p(u, θ|y) ∝ p(θ|u, y)p(u) (5)

where p(θ|u, y) and p(u) are defined respectively in (3) and (4).

3. RJMCMC SAMPLER

Several kinds of movements are considered in the RJMCMC dy-

namics [11]. Simple moves just update some model parameters, or

object features (location, marks). More complex moves allow for

dimensional changes in the model, such that the birth of the death of

an object in the current configuration. The different moves defined

below are finally randomly selected in the RJMCMC dynamic.

3.1. Sampling the parameters

One can deduce from (3) the conditional posterior distributions for

each parameter given the other ones. These posterior distributions

can be used as proposals, leading to an acceptance ratio equal to 1.

These moves reduce to classical Gibbs moves. Note that the different

moves to update the parameters are performed sequentially in the

RJMCMC dynamic.

3.1.1. Sampling the background parameters (m, σ2)

Let ν = M − 1, and

W = I −
„

η2

1 + η2

«

X(XT
X)−1

X
T ,

δ2 = (1T
W 1)−1, m̃ = δ2

1
T
W y,

s2 = ν−1δ2
h

y
T
W y − δ2(1T

W y)2
i

.

(6)

Based on (3) and (6), straightforward computations lead to

the following Inverse-Gamma density for the variance parameter:

σ2|(m, λ2, y, u) ∼ IG
`

M
2

, 1
2δ2 (νs2 + (m − m̃)2)

´

. By integrat-

ing out σ2, the marginal posterior for m becomes:

p(m|λ2, y, u) ∝
 

ν +

„

m − m̃

s

«2
!

−
ν+1
2

1(0,+∞)(m).

Thus the marginal posterior for m is a positive truncated Student

distribution with degree of freedom ν, location parameter m̃, and

scale parameter s: m|(λ2, y, u) ∼ T +(ν, m̃, s).

Finally, sampling from the bivariate posterior for (m, σ2), given

λ2, y and u, is performed in two-steps:

1. draw m|(λ2, y, u) ∼ T +(ν, m̃, s),

2. draw σ2|(m, λ2, y, u) ∼ IG(M
2

, 1
2δ2 [νs2 + (m − m̃)2]).

3.1.2. Sampling the SNR parameter η2

From (3), the posterior of η2 is

p(η2|m, σ2, y, u) ∝
„

1

1 + η2

«

n(u)
2

e

»

−

„

1
1+η2

«

β

2σ2

–

e
−

α1
2η2

(η2)α0+1
,

where β = (y − 1m)T X(XT X)XT (y − 1m). This distribu-

tion is not standard and it is not possible to sample according to this

distribution directly. However, the generation of η2|(m, σ2, y, u)
can be achieved using a standard Metropolis-Hasting step, by intro-

ducing an adequate proposal distribution. It leads to a “so-called”

Metropolis-within-Gibbs sampler.

3.2. Birth and Death moves

For a given configuration u, pB(u) denotes the probability to select

the birth move, while pD(u) = 1 − pB(u) is the probability to

choose the reversible move, i.e. the death move (basically, pB(u) =
pD(u) = 1/2).

For a birth move, a new object v is drawn independently from

the configuration u, according to the reference Poisson process. In

the death case, the object ui ∈ u that is proposed to be removed is

uniformly selected, thus with probability pS(ui|u) = 1/n(u).

Finally, in the birth case, the proposed configuration is v = u ∪
{v} and the following Metropolis-Hastings-Green ratio is obtained:

r(u, v) =
pD(v)

pB(u)

p(v, θ|y)

p(u, θ|y)
pS(v|v).

In the death case, the proposed configuration is v = u\{ui} and the

Metropolis-Hastings-Green ratio is:

r(u, v) =
pB(v)

pD(u)

p(v, θ|y)

p(u, θ|y)

1

pS(ui|u)
.

Finally, each one of this moves is accepted with probability α =
min (1, r(u, v)).

3.3. Updating an object of the configuration

This move can be viewed as the composition of a death and a birth

move. In fact, an object ui ∈ u is uniformly selected with probabil-

ity pS(ui|u) = 1/n(u). A new object v is drawn according to the

reference Poisson process. We propose to replace the object ui by

the new one v leading to the new configuration v = u\{ui} ∪ {v}.

The following Metropolis-Hasting ratio is obtained:

r(u, v) =
pS(v|v)

pS(ui|u)

p(v, θ|y)

p(u, θ|y)
,

and the acceptance rate is α = min (1, r(u, v)).



4. RESULTS

The algorithm was applied to a partially integrated (over λ) MUSE

data cube: instead of considering all the 3578 wavelengths, ’thick’

slices integrating 8 consecutive wavelengths are considered. This

lead to a new data set of size 300 × 300 × 448, where images at

some average λ are assumed independent. The intensity shape xi

associated with the ellipsis ui is modeled as a bivariate Gaussian

density f2D for which ui is a α iso-probability contour defined by
R

(x,y)∈ui
f2D(x, y)dxdy = 1 − α.

Probabilities to select the parameter update PParameter (see section

3.1), the birth/death PB/D (see 3.2), the object update move PObject

(see 3.3) are set to arbitrary values. Note that a fusion/split move

(not discussed in this paper) was added for the computation whose

results are shown below. The number of MCMC iterations that has

been done is 1.1 × 107. It takes about 250 minutes on a 2.40GHz

(single core) CPU.

Figure 1 shows the obtained parameters vs the wavelengths. These

parameters are estimated by taking the MMSE estimate over the last

50000 samples provided by the MCMC. The problem which appears

around λ = 850nm was already noticed by the astronomers who

prepared the data. It is noteworthy that the shape of the variance

receives some physical interpretation, as it matches the expected be-

havior of the spectrum when water is present in the atmosphere. This

was not given as a prior.
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Fig. 1. Estimated background mean m (a), logarithm of the esti-

mated background variance σ2 (b), estimated SNR η (c), as func-

tions of the central wavelength (in nm) for each slice of the data

cube. (d): log-posterior density at the current parameter values vs

the MCMC iteration.

A projection (integrated over λ) of the detected galaxy configu-

ration is shown on figure 2.

5. CONCLUSIONS

A fully Bayesian marked point process has been studied to automat-

ically extract the galaxies in the MUSE data cube. Future works

include the definition of new moves in the RJMCMC dynamic in

order to improve the mixing properties of the Markov Chain. The

Fig. 2. Projection of the MUSE data cube (in negative grayscale

colors) and contours (in red) of the 384 detected galaxies

extension to more complex intensity shape models, taking into ac-

count the point spread function of the imaging device must be inves-

tigated. Some improvements are also necessary in order to account

for very large dynamical variations of the intensity detected for dif-

ferent classes of astrophysical objects.
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