Lower bounds on Ricci flow invariant curvatures and geometric applications. - Archive ouverte HAL
Article Dans Une Revue Journal für die reine und angewandte Mathematik Année : 2015

Lower bounds on Ricci flow invariant curvatures and geometric applications.

Résumé

We consider Ricci flow invariant cones C in the space of curvature operators lying between nonnegative Ricci curvature and nonnegative curvature operator. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to Ricci flow has its curvature operator which satsisfies R+εI ∈ C at the initial time, then it satisfies R +Kε I ∈ C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I ∈ C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allow us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.
Fichier principal
Vignette du fichier
RFinvariantcurvaturesHAL.pdf (181.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00638017 , version 1 (03-11-2011)

Identifiants

Citer

Thomas Richard. Lower bounds on Ricci flow invariant curvatures and geometric applications.. Journal für die reine und angewandte Mathematik, 2015, 2015 (703), pp.27-41. ⟨10.1515/crelle-2013-0042⟩. ⟨hal-00638017⟩
84 Consultations
253 Téléchargements

Altmetric

Partager

More