Annotation of Scientific Summaries for Information Retrieval. - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Annotation of Scientific Summaries for Information Retrieval.

Résumé

We present a methodology combining surface NLP and Machine Learning techniques for ranking asbtracts and generating summaries based on annotated corpora. The corpora were annotated with meta-semantic tags indicating the category of information a sentence is bearing (objective, findings, newthing, hypothesis, conclusion, future work, related work). The annotated corpus is fed into an automatic summarizer for query-oriented abstract ranking and multi- abstract summarization. To adapt the summarizer to these two tasks, two novel weighting functions were devised in order to take into account the distribution of the tags in the corpus. Results, although still preliminary, are encouraging us to pursue this line of work and find better ways of building IR systems that can take into account semantic annotations in a corpus.
Fichier principal
Vignette du fichier
ibekwe-ESAIR-08-final.pdf (344.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00635699 , version 1 (25-10-2011)

Identifiants

Citer

Fidelia Ibekwe-Sanjuan, Fernandez Silvia, Eric Sanjuan, Charton Eric. Annotation of Scientific Summaries for Information Retrieval.. ECIR'08 Workshop on: Exploiting Semantic Annotations for Information Retrieval, Mar 2008, Glasgow, United Kingdom. pp.70-83. ⟨hal-00635699⟩
218 Consultations
457 Téléchargements

Altmetric

Partager

More