Counting eigenvalues in domains of the complex field - Archive ouverte HAL
Rapport Année : 2011

Counting eigenvalues in domains of the complex field

Emmanuel R. Kamgnia

Résumé

A procedure for counting the number of eigenvalues of a matrix in a region surrounded by a closed curve is presented. It is based on the application of the residual theorem. The quadrature is performed by evaluating the principal argument of the logarithm of a function. A strategy is proposed for selecting a path length that insures that the same branch of the logarithm is followed during the integration. Numerical tests are reported for matrices obtained from conventional matrix test sets.
Fichier principal
Vignette du fichier
RR-7770.pdf (355.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00634065 , version 1 (20-10-2011)
hal-00634065 , version 2 (21-10-2011)
hal-00634065 , version 3 (02-03-2012)

Identifiants

Citer

Emmanuel R. Kamgnia, Bernard Philippe. Counting eigenvalues in domains of the complex field. INRIA. 2011. ⟨hal-00634065v3⟩
317 Consultations
228 Téléchargements

Altmetric

Partager

More