Crossing the Reality Gap in Evolutionary Robotics by Promoting Transferable Controllers
Résumé
The reality gap, that often makes controllers evolved in simulation inefficient once transferred onto the real system, remains a critical issue in Evolutionary Robotics (ER); it prevents ER application to real-world problems. We hypothesize that this gap mainly stems from a conflict between the efficiency of the solutions in simulation and their transferability from simulation to reality: best solutions in simulation often rely on bad simulated phenomena (e.g. the most dynamic ones). This hypothesis leads to a multi-objective formulation of ER in which two main objectives are optimized via a Pareto-based Multi-Objective Evolutionary Algorithm: (1) the fitness and (2) the transferability. To evaluate this second objective, a simulation-to-reality disparity value is approximated for each controller. The proposed method is applied to the evolution of walking controllers for a real 8-DOF quadrupedal robot. It successfully finds effi- cient and well-transferable controllers with only a few experiments in reality.
Domaines
Robotique [cs.RO]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...