Inverse problems approaches for digital hologram reconstruction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Inverse problems approaches for digital hologram reconstruction

Loïc Denis
Thierry Fournel
Mozhdeh Seifi
  • Fonction : Auteur
  • PersonId : 763147
  • IdRef : 178790753

Résumé

Digital holography (DH) is being increasingly used for its time-resolved three-dimensional (3-D) imaging capabilities. A 3-D volume can be numerically reconstructed from a single 2-D hologram. Applications of DH range from experimental mechanics, biology, and fluid dynamics. Improvement and characterization of the 3-D reconstruction algorithms is a current issue. Over the past decade, numerous algorithms for the analysis of holograms have been proposed. They are mostly based on a common approach to hologram processing: digital reconstruction based on the simulation of hologram diffraction. They suffer from artifacts intrinsic to holography: twin-image contamination of the reconstructed images, image distortions for objects located close to the hologram borders. The analysis of the reconstructed planes is therefore limited by these defects. In contrast to this approach, the inverse problems perspective does not transform the hologram but performs object detection and location by matching a model of the hologram. Information is thus extracted from the hologram in an optimal way, leading to two essential results: an improvement of the axial accuracy and the capability to extend the reconstructed field beyond the physical limit of the sensor size (out-of-field reconstruction). These improvements come at the cost of an increase of the computational load compared to (typically non iterative) classical approaches.
Fichier non déposé

Dates et versions

hal-00630376 , version 1 (09-10-2011)

Identifiants

Citer

Corinne Fournier, Loïc Denis, Éric Thiébaut, Thierry Fournel, Mozhdeh Seifi. Inverse problems approaches for digital hologram reconstruction. Innovative Defense and Security Applications for Displays, Apr 2011, Orlando, United States. pp.1-14, ⟨10.1117/12.885761⟩. ⟨hal-00630376⟩
281 Consultations
0 Téléchargements

Altmetric

Partager

More