Structured Value Elimination with D-Separation Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Structured Value Elimination with D-Separation Analysis

Lionel Torti
  • Fonction : Auteur correspondant
  • PersonId : 868334

Connectez-vous pour contacter l'auteur
Pierre-Henri Wuillemin

Résumé

In the last ten years, new models based on Bayesian Net- works (BN) emerged to handle large and complex systems. These new models can be divided in two: the unification with First Order Logic and uncertainty (Markov Logic Networks, Bayesian Logic) and Knowledge Base Construction Mod- els (Probabilistic Relational Models, Multy-Entity Bayesian Networks, Relational Bayesian Networks). SKOOB, a consortium of researchers and engineers in risk management, focuses on Probabilistic Relational Models (PRM). Inference in such models is a much more difficult task than in BN. Structured Value Elimination (SVE) is the state-of-the-art algorithm for PRM models. In this paper, we propose an enhancement of SVE based on a well known complexity reduction technique from BN. We show how to integrate a d- separation analysis in SVE and how this leads to important improvements for the inference task.
Fichier principal
Vignette du fichier
FLAIRS10-028.pdf (127.68 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00627846 , version 1 (29-09-2011)

Identifiants

  • HAL Id : hal-00627846 , version 1

Citer

Lionel Torti, Pierre-Henri Wuillemin. Structured Value Elimination with D-Separation Analysis. International Florida Artificial Intelligence Research Society Conference, May 2010, Daytona Beach, United States. pp.122-127. ⟨hal-00627846⟩
129 Consultations
89 Téléchargements

Partager

More