On the gradient flow of a one-homogeneous functional - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2001

On the gradient flow of a one-homogeneous functional

Ariela Briani
Giandomenico Orlandi
  • Fonction : Auteur

Résumé

We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of the Hele-Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele-Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele-Shaw flow. We also obtain an explicit representation for the Total Variation flow in one dimension and easily deduce basic qualitative properties.
Fichier principal
Vignette du fichier
rotore09_11Ultima.pdf (195.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00627812 , version 1 (29-09-2011)
hal-00627812 , version 2 (11-10-2011)

Identifiants

Citer

Ariela Briani, Antonin Chambolle, Matteo Novaga, Giandomenico Orlandi. On the gradient flow of a one-homogeneous functional. 2001. ⟨hal-00627812v1⟩
330 Consultations
209 Téléchargements

Altmetric

Partager

More