BOSSA: extended BoW formalism for image classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

BOSSA: extended BoW formalism for image classification

Résumé

In image classification, the most powerful statistical learning approaches are based on the Bag-of-Words paradigm. In this article, we propose an extension of this formalism. Considering the Bag-of-Features, dictionary coding and pooling steps, we propose to focus on the pooling step. Instead of using the classical sum or max pooling strategies, we introduced a density function-based pooling strategy. This flexible formalism allows us to better represent the links between dictionary codewords and local descriptors in the resulting image signature. We evaluate our approach in two very challenging tasks of video and image classification, involving very high level semantic categories with large and nuanced visual diversity.
Fichier principal
Vignette du fichier
1569408599.pdf (1.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00625533 , version 1 (21-09-2011)

Identifiants

Citer

Sandra Avila, Nicolas Thome, Matthieu Cord, Eduardo Valle, Arnaldo de Albuquerque Araújo. BOSSA: extended BoW formalism for image classification. IEEE International Conference on Image Processing (ICIP), Sep 2011, Brussels, Belgium. pp.2909-2912, ⟨10.1109/ICIP.2011.6116268⟩. ⟨hal-00625533⟩
354 Consultations
535 Téléchargements

Altmetric

Partager

More