HMAX-S: DEEP SCALE REPRESENTATION FOR BIOLOGICALLY INSPIRED IMAGE CATEGORIZATION - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

HMAX-S: DEEP SCALE REPRESENTATION FOR BIOLOGICALLY INSPIRED IMAGE CATEGORIZATION

Nicolas Thome
Matthieu Cord

Résumé

This paper presents an improvement on a biologically inspired net- work for image classification. Previous models have used a multi- scale and multi-orientation architecture to gain robustness to trans- formations and to extract complex visual features. Our contribution to this type of architecture resides in the building of complex visual features which are better tuned to images structures. We allow the network to build complex features with richer information in terms of the local scales of image structures. Our classification results show significant improvements over previous architectures using the same framework.
Fichier principal
Vignette du fichier
HMAX-S_icip.pdf (11.71 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00625532 , version 1 (21-09-2011)

Identifiants

Citer

Christian Theriault, Nicolas Thome, Matthieu Cord. HMAX-S: DEEP SCALE REPRESENTATION FOR BIOLOGICALLY INSPIRED IMAGE CATEGORIZATION. IEEE International Conference on Image Processing, Sep 2011, Brussels, Belgium. pp.1261-1264, ⟨10.1109/ICIP.2011.6115663⟩. ⟨hal-00625532⟩
273 Consultations
209 Téléchargements

Altmetric

Partager

More