Digital imaging: A unified topological framework - Archive ouverte HAL Access content directly
Journal Articles Journal of Mathematical Imaging and Vision Year : 2012

Digital imaging: A unified topological framework

Abstract

In this article, a tractable modus operandi is proposed to model a (binary) digital image (i.e., an image defined on Z^n and equipped with a standard pair of adjacencies) as an image defined in the space of cubical complexes (F^n). In particular, it is shown that all the standard pairs of adjacencies (namely the (4, 8) and (8, 4)-adjacencies in Z^2, the (6, 18), (18, 6), (6, 26), and (26, 6)-adjacencies in Z^3 , and more generally the (2n, 3n−1) and (3n−1, 2n)-adjacencies in Z^n) can then be correctly modelled in F^n . Moreover, it is established that the digital fundamental group of a digital image in Z^n is isomorphic to the fundamental group of its corresponding image in F^n , thus proving the topological correctness of the proposed approach. From these results, it becomes possible to establish links between topology-oriented methods developed either in classical digital spaces (Z^n) or cubical complexes (F^n), and to potentially unify some of them.
Fichier principal
Vignette du fichier
hal.pdf (1.1 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00622529 , version 1 (07-11-2011)

Identifiers

Cite

Loïc Mazo, Nicolas Passat, Michel Couprie, Christian Ronse. Digital imaging: A unified topological framework. Journal of Mathematical Imaging and Vision, 2012, 44 (1), pp.19-37. ⟨10.1007/s10851-011-0308-9⟩. ⟨hal-00622529⟩
299 View
330 Download

Altmetric

Share

Gmail Facebook X LinkedIn More