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Abstract In this article, a tractablenodus operands pro-  sound digital topological models. Indeed, in order to seg-
posed to model a (binary) digital imagee(, an image de- ment, process, or analyse digital images in various applica
fined onZ" and equipped with a standard pair of adjacen+ion fields, it is often fundamental to be able to preserve, ge
cies) as an image defined in the space of cubical complexdésck or integrate topological information.

(F™). In particular, it is shown that all the standard pairs of  Basically, ann-dimensional (digital) binary image can
adjacencies (namely the,@) and (84)-adjacencies iZ?,  reasonably be considered as a subsét"adr, equivalently,
the (6 18), (18 6), (6,26), and (266)-adjacenciesi®, and  as a function fronZ" to the set of valuef), 1}. However, the
more generally the {2 3" — 1) and (3 — 1, 2n)-adjacencies actual structures visualised in such images generallyeeorr
in Z") can then be correctly modelled . Moreover, itis  spond to objects of the real world, and are thus continuous
established that the digital fundamental group of a digitalat least at the macroscopic scale where they are considered
image inZ" is isomorphic to the fundamental group of its Consequently, they are objectsiif, and not ofz".
corresponding image iff", thus proving the topological cor- In order to deal with this continuofdiscrete issue, re-
rectness of the proposed approach. From these results, it bsearch orts have essentially focused (since the first works,
comes possible to establish links between topology-cnt proposed nearly fifty years ago [1,2]) on specific and prag-
methods developed either in classical digital spagZ8sqr  matic questions related to topology, namely the definition
cubical complexesH"), and to potentially unify some of of a notion ofadjacencyrelation, and the induced notions
them. of connectivityandarcs These notions lead, in particular,
to high-level concepts of topology, such lxemotopy with
natural applications to “homotopy type-preserving” image
processing.

The first solution proposed to model the topology of a
digital image inZ" was to consider that two points (also
1 Introduction called xelg are adjacent if there are neighbours in tire

D cubic grid naturally induced bg" (possibly enriched by
The rapid and important rise of digital imaging, and thesome well chosen sets of “diagonals”). In this framework,
associated need offfcient image analysis tools for 2-D, partial solutions have been found to model the above topo-
and later 3-D (and even 4-D) digital images have providedogical properties, for instance by definidgal adjacencies
a strong motivation to research related to the definition ofor the object (composed of the xels of value 1) and the back-
ground (composed of the xels of value 0) [2], thus enabling
to define, from these adjacency relations, the notions of con
nectivity [3] and ofdigital fundamental groug4], which
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approaches of topology modelling, one can citemnected framework to correctly embed a binary digital image in the
ordered topological spacd$], abstract cell complexgl§]  topological spac&", according to the choice of adjacencies
(which are globally equivalent) arders[8]. Broadly speak- which has been made &f'.

ing, they propose to put some “topological glue” between The sequel of the article is organised as follows. Section
the xels of digital images in order to better define the topo2 recalls background notions and useful notations. Se@tion
logical links with their continuous analogues. describes the mapping enabling to associate a binary Higita

By comparison to these (more sophisticated) approachei§)age defined oZ" to an equivalent image defined in the
digital topology —proposed directly "~ may appear as Space of cubical complexeB"). A detailed study of such
the less satisfactory solution to accurately deal with togo ~ images is then proposed. Section 4, which is devoted to ho-
ical properties of binary images. Nevertheless, digitable ~ motopy in binary images, presents the main contribution of
ogy remains the most commonly used framework for dethis work. It provides the proof that the connected compo-
veloping image processing tools dealing with topologicalnents and the digital fundamental group of the digital insage
issues. Indeed, since digital topology is directly defined i in Z" are preserved ifi" when using the mapping described
Z", methods relying on it will also provide final results in in Section 3. Section 5 concludes this article by summaris-
Z" (namely, the actual support of the processed images')r,]g the contributions and presenting further works. Auxil-
which generally constitutes a desired property in most apiary properties (used in the proofs of Sections 3 and 4) are
plications. Moreover, a large literature has already been d proposed in Appendix A.
voted to homotopy-type preservation in digital topologgy, e
pecially thanks to the concept of simple point [9-12]. Irsthi
context, only very few methods have been based on altern@ Background notions
tive models €.g, for image segmentation based on cubical
complexes [13] or orders [14]; parallel skeletonisationdzh This section provides the minimal set of background no-
on cubical complexes [15]), while digital topology has led t tions required to make this article globally self-containe
the design of quite numerous methodS, devoted (non exhaL@nd then more ComprehenSible for the reader. Some of them
tively) to deformable models (see.g, [16,17]), segmenta- are standard notions of lattice theory (Section 2.1) and can
tion (seeg.qg, [18,19]), image correction (see,g, [20,21]), alsobe foundin[29,30]. The reader interested in topolaigic
or image warping (se.g, [22]). notions (Section 2.2) can find complementary information

Because of this intensive use of digital topology, it mayIn any lecture book on general topology [31,32] or on al-

be important to guarantee that there exists an actual Cong_ebralc top.ology [33-35]. Th? main (;ub|cal Comp'?xes no-
patibility between digital topology and the other proposeqIlons (Sectlon _2'3) arfe 'descnbeaeig, in [15,36], Wh”e a
topological approaches (and more generally with the “con9°°d introduction to digital topology may be found in [5].
tinuous” topology). This requires, in particular, to beeatd
embed a binary image initially defined &' into a richer
space (while respecting the chosen adjacenci&$)invhile
preserving certain topological characteristics of olkgé€see,

.g., [23,24]). . . . o )
e.9., [23,24]) reflexive, antisymmetric, and transitive.gartially ordered

The “nche_r space” that is us_ed here]H%, namely the set(or posej is an ordered pairX, <) where the relatior is
space of cubical complexes, which is together a connecte&i partial order orX. We writex < y whenx < y andx # y

ordered topologic_al_space, a cellular s_pace and an oirde_r( The relation> defined onX by x > yif y < xis a partial
a poset_). Thoughitis _cqmmonly admitted th"_"t there exists Brder onX called thedual order The coveringrelation <,
strong link between digital topology and cubical Complexesassociated te, is defined by < y (say ‘y coversx’) if

[25], since complexes are closed objects, the images hat;(-< y and there is na such thai < z < y. We set:

dled inF" correspond generally to images define@irwith
a (3' - 1, 2n)-adjacency pair. In [26], a method is proposed x™ = {ye X |x<Vy};

to include and improve digital topology in the framework x™ = {ye x' | y' = {y}} ;
of posets, but the case of the {®)- and (186)-adjacency x! ={ye X|y<x}; (1)
pairsis not considered. In [24,27,28], the authors giveyawa xl* = x! \ {x} = {ye X |y < x}
to embed digital pictures in a space of complexes accordx< = {ye X|x<y}.

ing to the kind of connectivity that has been choseZ'in

However, they do not use an intrinsic topology on complexe#\n elementx € X is minimalif x! = {x} and maximalif
which are just a step betwe&f andR". This leads themto X' = {x}. An elementx € X is theminimumof X if X = X
define specific notions of connectedness and digital homand is themaximumof X if x* = X. If the minimum (resp.,

topy in F". Thereby, in this article, we propose a completethe maximum) exists, then it is unique.

2.1 Posets

Let X be a set. A binary relation oXis apartial orderifitis
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2.2 Topological spaces (F",C) is a poset. LeE C F" be a set of facésLet f € F

be a face. The facéis afacetof F if f is maximal inF. In
Let X be a set, the elements of which will be calf@ints A particular, ifx = (X)L, € Z", the setx'= [T (%, % + 1} is
topologyon X is a collectionlU of subsets ok, calledopen  a facet ofF".

sets such that: Some technical lemmas, essentially devoted to cubical
(i) 0, X are open sets; complexes, and needed in the sequel are provided in Ap-
’ ' pendix A.

(ii) any finite intersection of open sets is an open set;
(iii) any union of open sets is an open set.

The complement irX of an open set is called@dosed set

From the above definition, any finite union of closed sets is a

closed set and any intersection of closed sets is a closed set

A set of open sets is bhasisfor a topology if any open set

is a union of open sets of this basis.n&ighbourhooaf a (b)

pointx € Xis a subset oK including an open set containing Fig. 1 Two representations of a set of fads= {f, g, hj in Z? with,

X. for instance,f = {0} x {1}, g = {0,1} x {0, 1} andh = {1} x {0,1}. The

Let (X, <) be a poset. The sét defined byl = {U C  facegis a facet ofF (and also of#?).

X | Vx € U,x! ¢ U} is a topology onX which is called

the Alexandrgf topology In this topology, the set is the

smallest open set containing(or the smallest neighbour-

hood ofx, called thestar of x) and the sek! is the small-

est closed set containing (the closureof x). Two points 2.4 Digital topology

X,y € X areadjacentif x < yory < x. A sequenceX);_,

(r > 0) of elements oK is anarc in X (from z to z) if for Let x = (x), andy = (y;)_, be two distinct points irz"

alli € [1,r], z-1 andz are distinct and adjacentA subset (also calledn-xels or simplyxel§. The pointsx andy are

Y of X is connectedf for all x,y € Y, there exists an arc in 2n-adjacentf Y, |x — Vil = 1. They are (3 - 1)-adjacent

Y from x to y?. A connected componeaf a subsel of X f max {Ix - yil} = 1. Whenn = 3, the pointsx andy are

is a maximal (for inclusion) connected subsetyof 18-adjacentif they are 26-adjacent ang., |x — Vil < 2.

Theclosure ¥ of a subsel C X is the smallest closed Leta € {2n,3" - 1} (or possiblye = 18 if n = 3). Any point

set includingY. Theinterior Y° of a subsety € X'is the in Z" is e-adjacent tar other points. A sequencge= (z)l_,

largest open set included ¥ (it is also the union of allopen (r > 0) of points inX ¢ Z" is a (digital) a-patHf* (from 2

sets included iny). Closure and interior are dual notions to z) if for all i € [1,r], z_1 andz are a-adjacent. The

since—(Y°) = (~Y)! and—(Y!) = (-Y)° where-Y = X\ Y.  integer is thelengthof y. A subsetX C Z" is a-connected

An open se is aregular open seif Y = (Y!)° and aclosed if for all x,y € X, there exists a digitat-path fromx to y

set is aregular closed seif Y = (Y°)*. The complement of in X. In order to retrieve some topological features in binary

a regular open set is a regular closed set. digital images (such as the notiontudle), it is necessary to
use pairs of adjacencies, one for tilgect Xand one for the
backgroundz" \ X. The suitable pairs are 123" — 1) and

2.3 Cubical complexes (3" - 1, 2n) (plus, whem = 3, (6,18) and (186)).

Let Z be the set of integers. L&} = {{a} | a € Z} and

Fl={faa+1}jjaez) Letn> 1. 3 Connectivity: from Z" to F"

Let f c Z". If f is the Cartesian product of elements
of F} andn — m elements ofij, we say thaif is afaceor A (digital) image on z" is a function fromz" to (0, 1.
anm-face(of Z"), mis thedimensionof f, and we write A (complex) image: on " is a function frome" to {0, 1}.
dim(f) = m (some faces d? are depicted in Figure 1). We The object (resp. thebackgroundl associated to the image
denote byF" the set composed of all faces @f; this set ¢ : x — {0, 1} (with X = Z" or F") is the se®~1({1}) (resp.
is the (-D) space ofcubical complexesiVe denote bys} 6-1({0})).
(0 < k < n) the set composed of &tfaces ofZ". The couple

3 In the literature devoted to cubical complexes, it is gelhers-

1 For the sake of readability, a discrete interval will be wbfa, b, sumed thaF C F" is afinite set of faces. This constraint can however
while a continuous one will be noted, p]. be relaxed in the context of this work.
2 In a poset, this definition is equivalent to the classical &re 4 We keep the usual designation though it would be more coheren

which a set is connected if it cannot be split in two open (oset) in this work to define such a sequence of points as-anc in order to
non empty sets. reserve the worgathfor the functional point of view.
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If uis a complex image, then we writg, . u(X) (resp.
Axex £(X)) for the maximum (resp. minimum) of the set
{u(x) | x e X} and we also write((a) vu(b) (respu(a) Au(b))
for Vxeab) #(X) (resp.Axeaby #(X))-

The posetF", C) is equipped with its Alexandfbtopol-
0gy.

All along the article, we provide intuitive representaton
of (abstract) objects d" by using diferent boxes for faces
of different dimensions. Furthermore if, the faces of the
object are depicted in black while the faces of the back-
ground are in white, or are not shown, and,Hh we use
different colours for the faces of the object (blue: 3-faces;
green: 2-faces; yellow: 1-faces; red: O-faces) while thekba
ground is not represented.

=
—
=
0

| mim

C——/oC/]ocC/ o3

CCO 0 omme = S O

—
Q
=

3.1 One-to-one correspondence between imagéed' amd
Fn

When two faceg, h € F" cover a facef € F" and their
smallest neighbourhoods do not interseet(g" N h' = 0),

we say that their areppositewith respect to the facé (see
Figure 2). We denote opp) the set of all{g, h} for g op-
posite toh w.r.t. f. Intuitively, the facef is required to “lo- ()

cally connect” the faceg andh. Whenf is a facet, we have Fig. 3 Two e-regular images () of? with &(2) = —1, (1) = 1, (b) on
opp(f) = 0. F° with £(3) = ~1,£(2) = &(1) = L.

For each connectivity functioa : [1,n] — {-1,1}, we
define the functior, : {0, 1}2" — {0, 1}*" which maps any
digitalimaget to the unique-regularimagée’, (1) such that,
for eacha € Z", we haver,(1)(&8) = A(a). It is obvious that,
for eache, the function, is a bijection between the set of
digital images{0, 1}Z" and the subset of-regular images

@) (b) ©

Fig. 2 Two opposite faces if® with respect to (a) a 2-face, (b) a 1face, of {0, 1}f". Moreover, thanks to the choice of the connec-
(c) a O-face. The dashed boxes in (b) and (c) show other paaispp-  tijvity function &, we can accurately “carve” an imagelifi

site faces. to model the desired connectivity ' (see Figure 4). In

particular, we can get the usual pairs of adjaceric{sse

Figures 4-7 and Table 1). In Section 4, the correspondences
Definition 1 (regularimage) Lete : [1,n] — {-1,1}bea givenin Table 1 will be justified by two theorems establish-
function calledconnectivity functioh A functiony : F" —  ing that, by following these links, we preserve the conngcte
{0,1} is ane-regular image(or simply aregular image if ~ components and fundamental groups.
forallme[1,nJand f € F] _,, we have, recursively When the functiom is constant, Definition 1 can be sim-

. _ plified. Note that the case = —1 corresponds to then?

u(f) = {szzzigizg XZEE; :]: igg _ il adjacency inz" while the case= = 1 corresponds to the

(3" - 1)-adjacency irz".
Examples of regular images are depicted in Figure 3.

5 By abuse of notation, we will often write a connectivity fdion Proposition 1 Letu : F" — {0, 1} be ane-regular image.
e :[1,n] — {-1,1} by exhaustively providing its valuese., by de- n
noting &(i))i., instead ofs, as done for instance in Figure 4(b,c). We Let f be a face of".
will also use a dot symbol (.) when afi) value does not influence the
behaviour of thes function on a given object, as done for instance in  © Note that each one of thé 2onnectivity functiong : [1,n] —
Figure 5(a). For the sake of simplicity, we will also wrige= 1 (or {—1, 1} may enable to retrieve a standard adjacency for the objest (p
¢ = -1) wheneg is a constant function, as done for instance in Fig- sibly redundantly, see Figure 5(c,d)), but does not nedgssaduces
ure 4(a,d). a standard pair of adjacencies, as exemplified in Figuresl@an
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Fig. 4 Images.(1) : F? — {0, 1} for some givem : Z? —

o0

@e=(....-1) (b) £(3) = 1,&(2) = -1 ©) £(3) = £(2) = L &(1) = -1 de=1

Fig. 5 ImagesZ:(1) : F® — {0, 1} for some given : Z® — {0, 1}. (a) With&(3) = -1, we obtain the 6-adjacency i?. (b) With £(3) = 1 and
£(2) = —1, we obtain the 18-adjacency . (c, d) Withe(3) = £(2) = 1, we obtain the 26-adjacency .

Q@9

@eB)=e@) =-Le)=1  (b) &3)=2(2) = (1) = -1

Fig. 6 The (subtle) dierence between the connectivity functions«1, -1) and ¢1, -1, -1).

QoYY

@) (3)=-1e(2) =1 (b) £(3) = £(2) = -1 © eB)=el)=Le@)=-1 (d) @) =1e@2)=el)=-1
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Fig. 7 (a,b) A torus built with six 3-faces illustrates how the twa@jacencies can be obtained. There are two 3-faces of tiegtoaind which
intersect the six 3-faces of the torus. These two whitesfare 26-adjacent but in () they do not intersect in the backgl (for the torus is a
horn-torus) while, in (b), they do (the torus is a ring-tgrudence, in (a), we model a (68)-adjacency relation while in (b), we model a Z6)-
adjacency relation. (c,d) An object built from three faogith two connectivity functions which could priori be used to model the 18-adjacency
(see Figure 5(b)). In (c) we can see a red 0-face between ithe tabes. This is what is expected for the background mustdé-adjacency. In
(d), there is a hole instead of the red 0-face, which is naeocbiin 18-adjacency.
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Space dimension n=2 n=3 n > 4 (actually,n € N*)
Adjacencies irZ" | (4,8) | (8,4) | (6,26) (6,18) (18,6) (26,6) | (2n,3"-1) | (3"-1,2n)
Connectivity e=-1]¢e=1|e=-1|eB)=-1|€eBd)=1 e=1 e=-1 e=1
function g2)=1 g2)=-1

e)=-1| e)=1

Table 1 Correspondence between pairs of adjacenci@d iand connectivity functions.

() If Ym> dim(f), e(m) = -1, then we have

u(f)= A\u@=/\ @

f<a acf™*

(i) If Ym> dim(f),e(m) = 1, then we have

u(f)=\/ @ ="\/ u(@)

f<a acf™™

In particular, if e = =1 (resp.e = 1) thenu(f) = Agetr+ 1(8)
(resp.u(f) = \Vaefr+ u(@)) forall f € F".

Proof The proofis restricted to part)( since parti{) can be

easily obtained by duality. We build the proof by induction
onk = n-dim(f) > 1. Whenk = 1, there are two facets

g, hsuchthatf™ = f< = {g, h} and opp€) = {{g, h}}. Thus,
sincee(n) = -1, we haveu(f) = V(apjcopp(r) #(8) A u(b) =

(@) A u(h) = Aaer+ (@) = At<apt(a). Suppose now that,

forsomek € [1,n-1], Ym > n-k, &(m) = —1 and for each
faceb of dimensiomn — k, u(b) = Ap<aut(d) = Agesr+ u(a).
Let f be a face of dimensiom—k— 1. From Definition 1, we
haveu(f) =V (apjeopp(r) #(8) A (b), and from the induction
hypothesis, it then comes

p(fy=\/ [[ A\ u(c)]A[ A\ u(c)]]
{abjeopp(f) \\cea'* cebl+

and thus

u(f) =

\VARANZC

{a,bjeopp(f) ceal+ub!+

From Lemma 7i{) (see Appendix A), we havé'* = a'* U
b™ for all (a, b) € opp(f). Hence, we obtain :

why= \/ Au@= )\ uo

{a,b}eopp(f) ce f1+ cefl+

Using again the induction hypothesis, it finally comes

Au@= A\ )=\ u) = u(f)

f<a f<a beal* be 1+

Hence, the result holds.

3.2 Duality

Letd : X — {0,1} with (X = Z" or F") be an image. We
define thenegative image 6 : X — {0, 1} of 8 by -6(x) =
=(6(x)) = 1 - 6(x), for all x € X.

In the following,e denotes an arbitrary connectivity func-
tion.

Proposition 2 Letu : F" — {0, 1} be ane-regular image.
Then—u is a(—¢)-regular image.

Proof Let f € F]_,, with 1 < m < n. Let us suppose that

e(m) = 1. Then, Gu)(f) = =(u(f)) = ~(Aapjcopp(r) #(8) V
u(b)). From De Morgan’s law, we infer:

(=)(f) = \/ ~(u(@)) A = (u(b))

(a.b)eopp(f)
=/ (w@ A )
(a.b)eopp(f)
The cases(m) = —1 is similar. Whencenyu is (—¢)-regular.

Letu : F" — {0, 1} be ans-regular image. We define the
image—u : F" — {0, 1} by (—u)(f) = u(f) forall f € Fy and
uis (—&)-regular, as exemplified in Figure 8.

Proposition 3 Letu : F" — {0, 1} be ane-regular image.
Then we have(—u) = —(—u).

§ —

- —— —(-p)
Proof Let f € Fn. We have (—w))(f) = —=((-w)(f)) =

=(u(f)) = (=u)(f) = (=(=w)(f). Furthermore~x and-u
are (¢)-regular. So~(—u) and—(—u) aree-regular. Thus,

(=) = —(=p).
From the above definitions and propositions, we straightfor
wardly derive the following result.

Proposition 4 LetA : Z" — {0, 1} be a digital image. Let
¢ : [1,n] — {-1,1} be a connectivity function. Then, we
have-(£:(1)) = {-e(=4).

1 — o

‘| Je.

gs(/l) — é/—s(_‘/l)
Propositions 3 and 4 are illustrated in Figures 8 and 9.
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Fig. 8 (a) A (-1, 1)-regular image: : F2 — {0,1}. (b) The (1-1)-
regular image-u. (c) The (1-1)-regular image-u. (d) The (1, 1)-

regular image-(—u) = —(—u).

(©) Zs(1)

Fig. 9 (a) A digital imaged : 72 — {0,1}. (b) The negative image
-1 associated td. (c) Thee-regular image’.(1) associated ta with
e = (1,-1,-1). (d) The E¢)-regular image,_.(—1) associated te1.
Note that (b,d) have been rotated-ef/2 along the (nearly) vertical

N

 s— R e— R S—|

/.

(b) —

1A

Wi

(d) —(=p) = ~(=p)

L ]
/\\
. jo)
/ ~ 7
l, ~ /
.\ ]
L

(d) £e(=4) = ~(Z:()

axis in order to ease the visualisation of (d).

ever, the values of the lower-dimensional faces depend on
the connectivity functiore. In this section, we state some
general properties related to links between these valugs an
the considered connectivity functions.

The following lemma is a straightforward consequence
of Definition 1.

Lemmal Letu : F" — {0, 1} be ane-regular image. Let
f € u1({1}) be such thatlim(f) < n. Then, eitheg(dim(f)+

1) = -1 and there exist$a, b} € opp(f) such thatu(a) =

u(b) = 1, or g(dim(f) + 1) = 1 and for all {a, b} € opp(f),

u@ =21orulb) =1

By applyingn — dim(f) times Lemma 1, we deduce the
following proposition.

Proposition5 Letu : F" — {0, 1} be ane-regular image.
Let f € u2({1}). Then, for each k [dim(f) + 1,n] there
exists a face g f* N F} such tha(g) = 1.

The next proposition —easy to prove by induction— en-
sures that in a region of facets of uniform values, the image
has a constant value in all dimensions.

Proposition 6 Lety : F" — {0, 1} be a regular image. Let
x € {0,1} and f € F". If, for each facet g in T, u(g) = x,
thenu(f) = x.

The following proposition establishes a partial converse
of Proposition 1. In the sequel, we Wrif:%* for the set of
facets in the star of which have value 1flT+ ={geF|
f < gandu(g) = 1}.

Proposition 7 Letu : F" — {0, 1} be ane-regular image.
Let f e u~Y({1}). If there exists a unique facet if f, then
&(K) = 1 for all k e [dim(f) + 1, n].

Proof The proof is made par induction an— dim(f). For
dim(f) = n, the property is obvious. Let us now suppose
that the property is true for any face of dimension greater
or equal to a givem < [1,n]. Let f € ) , be such that

f € u~Y({1}) and there exists a unique faggin f]*. Leth

be afaceinf<.1f he f<\ g' (and such a face exists), none

Remark 1This proposition establishes that, for a given con-uf ihe facets irh' are ing~L({1)). Thus, from Proposition 5,
nectivity functione (and the associated pair of adjacenciesq derive thah ¢ 1~1({1)) and, by Lemma 1, we know that

(@, B)), all the properties valid fon1({1}) andx~*({1}) are
also valid for 2=({0}) and x~({0}) for the opposite con-

not all the faces in < can verifyh ¢ p2({1}). Hence,
there existh € < n g' such thath € x~1({1}) and, from

nectivity function—¢ (and the associated pair of adjacen-ine induction hypothesis, we deduce tagk) = 1 for all

cies 3, @)). Broadly speaking, this means that the notions, > m+1. Let @ b) € opp(f). From Lemma 7i{), we derive
of object and background can be switched without l0ss Ofj\5¢ 5 ¢ g' orb ¢ g'. Thereforeu(a) = 0 or u(b) = O

generality, provided that the pair of adjacencjgsy) is also

switched accordingly.

3.3 Image values and connectivity functions

The values of the facets of asregular image o are di-
rectly provided by its associated digital image@h How-

andu(a) A u(b) = 0. Since this last equality is true for each
pairin opp(f), we can state thay (, pcopp(r) #(2) A (b) = 0.
So,&(m) cannot be equal tel. Henceg(m) = 1, and then
g(k)=1forallk > m.

Hereafter, we study the value of an intersection of facets.
This is an important issue, which will especially be consid-
ered in Section 4.
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Proposition 8 Letu : F" — {0, 1} be ane-regular image.
Let f,g be two distinct facets @i ({1}) with f n g # 0. If
g(k) = 1for allk € [dim(f ng) + 2,n], thenu(f ng) = 1.
Conversely, ifu(f N g) = 1 and the only facets i|(1fﬁg)1+
are f and g, ther(k) = 1 for all k € [dim(f Nng) + 2,n].

Proof We seth = f ngandd = dim(h) + 1. Sinceu(f) =
u(@) = 1 andu(a) = Vpear+ u(b) for each facea such that
dim(a) € [d, n— 1] (Proposition 1), all th&-faces included
in f org, with k > d, are ing*({1}). In particular, thanks to
Lemma 6, we derivé~ C u~1({1}) and, therefore, whatever
is the value of(d), h € 1X({1}). Conversely, any faca
h= is either included irf or in g (Lemma 6), but not in both
of them. Since the only facets iff r(\g)}+ aref andg, we can
use Proposition 7 to conclude thgk) = 1 forallk > d + 1.

Proposition 9 Letu : F" — {0, 1} be ane-regular image.
Let f,g be two distinct facets @i *({1}) with f n g # 0. If
u(f ng) = 1, then there exists an arc g (g;)*, (r > 0)
from f to g in(f N @)’ Nnu~2({1})) such that, for all ic [0, r],
Oz € Fyand for alli € [0,r — 1], Gpi+1 = 02 N Ozg+1) € Fry
with me [k, n—1] where ke [0, n—1] is the lowest integer
such thats(i) = 1 foralli € [k+ 2,n].

Proof Letu be ane-regular image an#d € [0,n— 1] be an
integer such that(i) = 1 foralli € [k+2,nJande(k+ 1) =
—1 (see Figure 10 for examples). L&tg be two facets of
u~1({1}) such thatf N g # 0 andu(f N g) = 1. The proof is
carried out by induction ok—dim(f ng). If k < dim(f ng),
the property is obvious since we can set (f, f N g, Q).
We suppose now that the property is true for any facejts
such that dimi(n j) > k— mfor somem € [0,k — 1]. Let
f,g be such that dinf(n g) = k— m— 1. There exists a
facea such thatf N g < aandu(a) = 1 (Lemma 1) anc
is included inf or in g (Lemma 6) but not in both of them.
Sinceg(k+1) = -1 andk+ 1 > dim(a) + 1, we derive from
Proposition 7 that there exists a fatet # f andh # g, in
a' nu~t({1)). It is easy to see that &sg, h are three facets
in F" such thatf ng c h, then dimf nh) and dimgnh) are
strictly greater than dinf(n g) so we can use the induction
hypothesis: there exist two arcs ifi ( @)’ N x~1({1}), a1
from f to handg, from h to g, whose faces of odd rank are
facets ofF" and faces of even rarikare the intersection of
the facets of rankis- 1 andi + 1 with a dimension belonging
to [k, n — 1]. Therefore, there exists an arc fromto g in

(f ng)" nu({1}) whose faces satisfy all the conditions of

the proposition.

3.4 Computing values directly from facets

o, &y

(@) £(3) = -1 ()k=n-1=2

... @

©) £(3)=15(2) = -1

dk=n-2=1

Fig. 10 (a) If &(3) = —1, the integek defined in Proposition 9 is equal
ton -1 = 2. Then the proposition states that, since the intersection
(in red) of the two facets gi~({1}) (in blue) is ing~1({1}) there must
exist a path composed of facets and of faces of dimensiorehiflan

2 between these two facets, as the one depicted in (b). &B)f=
1,&(2) = -1, the integek defined in Proposition 9 is equal to—

2 = 1. So, there must exist a path composed of facets and of féces o
dimension higher than 1 between these two facets as the qiciet:

in (d).

In F3, it requires to carefully study a particular configura-
tion (depicted in Figure 11), however, it can be answered, as
stated hereafter. In higher dimensional spaces, the partic
lar configurations to study are too humerous to get a useful
result.

Let f € F", with n > 3. If dim(f) = n - 3, the poset
(f7,<) has a unique minimum, namely; and 8 maximal
elements, namely the facets formifiy. From an adjacency
point of view, these facets are geometrically organisetias t
8 vertices of a cubical structure. Wheiﬁ+ (i.e. the facets
of f™ whose values are equal to 1) is organised as in the
configuration depicted in Figure 11(a) (up to rotations and
symmetries), we say theqT+ is atrihedron

We define Card(E) = 3 and Card(E) = 5, if Eis a
trihedron, and Cart(E) = Card (E) = Card) otherwise.

For each connectivity functios, we define recursively
the functions, by

5. : [0,n] — [1,27]
0 »1

i 26.() - 1ife(n-i) =1
- H{Z(Ss(i) if e(n—i)=-1

It is easy to check that, for ath € [0, n], we have

So(m) =1+ Zm:(l —g(n—k+1))2mk?
k=1

The aim of this section is to find the number of facets which
must have the value 1 in the star of a face to ensure that thRroposition 10 Lety : F" — {0, 1} be ane-regular image.
face also has value 1. I?, the answer is straightforward. Let f be a k-face af" (withn—3 <k < n-1).
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(@) 0) @) =Le@=e1)=-1 () e@)=-Le@=e)=1 (d)e@)=el)=-1e02)=1

Fig. 11 (a) Symbolic representation of a trihedron related to a faeeF" such that dimf) = n — 3. Black dots:flT*; white dotsfT* \ flT*. The
dash lines represent the existence of a face of dimemsiadhforming the intersection between two facetd &f. (o—d) Examples of trinedra, with
three connectivity functions (one of the blue facets is hidden).

dim(f)=n-2
e (.17 (.-L1) (.L-1) (.-L-1)
C. | Cadf)>1 | card/")>2 | Cardf/")>3 | Cardf/*)>4
dim(f)=n-3
e [ (.11 [ (.,L-11) [ (...-L-11)

C. | Cardf/")>1 | Card(f,")>2 | Card(f,")>3 Card(f*) > 4
f/* not a trihedron
P (..L1-1) | (...-L1-1)|(..L-L-1)| (...,-1-1-1)
C. | Card([)>5 | Card(f,")>6 | Card(f/")>7 Card(f;") =8

or 1" a trihedron

Table 2 Necessary and flicient conditions to obtaip(f) = 1 (see Corollary 1).

(i) If Card (f*) > 6.(n- k), thenu(f) = 1. Card(f{*) > 26.(m~- 1) = 6.(m). Then (i) holds.

(i) If u(f) = 1, thenCard' (f[*) > 6.(n-K). Second case:(dim(f) + 1) = 1. If Card (") > 6.(m) =
26.(m—1) -1, then (from Lemma 7) in each couple of op-

Proof We setm = n—dim(f) = n—k (notethat < m< 3).  posite faces with respect tothere exists a facg such that

If m= 1, thens,(n - k) = 6.(1) is equal to 1 ifs(n) = 1  Card (g'") = Card@l”) > 0.(m— 1), that is, thanks to the

and to 2 ifg(n) = —1. Since, in the casa = 1, f™* contains  induction hypothesis, in each couple of opposite faces with

exactly two faces, which are opposite facets with respect toespect tof there exists a face whose value is equal to 1.

f, the statementd)(and (i) are obviously true fom = 1. Thus,u(f) = Aapeopp) #(8) V u(b) = Aapjeoppy L = 1.

Now let us suppose that € [2, 3] and that the statements Then () holds. Conversely, ifi(f) = 1, thanks to Lemma 1

are true fom - 1. and the induction hypothesis, we know that in each couple

First cases(dim(f) + 1) = -1. If Cara”(fl“) > 6.(m) =  of opposite faces with respect fathere exists a facg such

26:,(m — 1), then we deduce from Lemma 8 that there exthat Card(g'") = Card@l”) > 6.(m—1). We deduce from

ist two facesgy andh, opposite with respect td, such that Lemma 9 that Card‘g“) > 25.(m—1)—1 = 6.(m). Then i)

Card@]") > 6.(m- 1) and Cardfl") > 6.(m- 1). Since  holds.

the dimension of the facasandh is greater than or equal

ton - 2, we get Card:ﬂ*) = Card(g{*) and Cardl(ﬁ*) - From Proposition 10 and Definition 1 (needed Wﬁéh

Card (h!") so we can use the induction hypothesis to derivdS @ trihedron), we derive the following corollary.

that(9) = p(h) = 1. Recalling thak(dim(f) + 1) = -1, o, 0101 Lety : B 5 (0, 1) be ans-regular image. Let
we dhf;]"q“((ff)): Vl{amTEﬁppﬁ)(f)‘(? . “(té) = 1(Q) ?“(2)( 5 L f be ak-face of" (with n-3 < k < n— 1). Then(f) = 1
and thusu(f) = 1. Then olds. Conversely, i = . + cnticf " : :

1. thanks to Lemma 1 we know that there exigsh) e iff the setf satisfies the condition Qgiven in Table 2.
opp(f) such thatu(g) = u(h) = 1. Hence, by the induc-
tion hypothesis, Cardg;") = Card@]") > 6.(m— 1) and 35 Regular images and regular ofased sets

Card'(hl*) = Cardl*) > 6,(m - 1). Sinceg andh are

opposite with respect td, we derive from Lemma 7 that We have defined the object (resp. the background) of a regu-
Card(f{*) = Cardg!") + Cardf"). Hence, Carti(f/*) >  larimageu : F" — {0,1} as the sef*({1}) (resp.u~*({0})).
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We show in this section that they are topologically regularA=1({1}) ¢ Z" (resp.A"%({0}) ¢ Z") associated to an image

i.e.,, they do not have thin parts nor thin holes (by “thin”, we
mean of lower dimension than the surrounding space).

Lemma 2 Letu : F" — {0,1} be ane-regular image. Let
x € {0, 1} Then, we have

)Y € i) < (i)

Proof The proof is proposed fox = 1. The casex = 0

is obtained by duality (see Remark 1). LEetbe a subset
of F". The two following chains of implications are easy to
establish:

fe(EY > flcE'sf*cE'=sf*CcE
dge f™*,ge E=3dg> f,gec E° = f € (E°)*

Now, we takeE = u1({1}). From Proposition 6, we have
fI* ¢ E = f € E. From Proposition 5, we also hafee

E = dg e f™*,g € E. Hence, the assertion holds!® ¢
EcE°L

Proposition 11 Letyu : F" — {0, 1} be ane-regular image.
Let x € {0,1}. Then(u~*({x}))° is a regular open set and
(,u‘l({x}))l is a regular closed set.

Proof The proof is proposed fox = 1. The casex = 0 is
obtained by duality (see Remark 1). LBt x~1({1}). From
Lemma 2, we haveR!)° ¢ E c (E°)'. Hence, we readily
derive:

EYcElcEY = pt c B

where the last inclusion comes fraBnc E!. Therefore, we
get the equalitg!" = E! which means thaE! is a regular
closed set. The proof of the equalfy'” = E° is similar.

Corollary2 Letu : F" — {0,1} be ane-regular image.
If ¢ = -1, thenu~2({1})) (resp.x~1({0})) is a regular open
(resp. closed) set. ¥ = 1, thenu=2({1}) (resp.x({0})) is a
regular closed (resp. open) set.

Proof The proofis proposed fot = 1. The case = 0 is ob-
tained by duality (see Remark 1).df= -1, we readily have
g>f =g ™ = Apege ) 2 Aperi p(h) = p(g) 2
u(f). Thus,g > f andf e p1({1}) imply g € p2({1)),
that is x~1({1}) is an open set. It follows thai 1({1}) =
(u~X({1))) is a regular open set. Similarly if = 1,g < f
impliesu(g) > u(f). Henceu1({1)) is a regular closed set.

4 Paths and (digital) fundamental groups

In this section, we study how the functiofisdefined in Sec-

A:Z" - {0,1}, and the set of the connected components of
the object (resp. backgrouna)'({1}) € F" (respu~2({0})

F") associated to the regular image: F" — {0, 1}, de-
fined byu = Z.(12), the functione being chosen with respect
to a given pair of adjacencies #'. Theorem 4 states that
. induces an isomorphism between the digital fundamental
group ofA7%({1}) (resp.A~1({0})) and the fundamental group

of u~*({1}) (resp.u~*({0})).

4.1 Background notions on paths and arcs

We recall the classical definitions of path equivalence; fun
damental group in a topological space (in particular, in a
poset), and of digital path equivalence and digital fundame
tal group inZ".

4.1.1 The fundamental group of topological spaces

Let X be a topological space. A pathin X is a continuous
functionp : [0, 1] — X. Two paths, gin X areequivalentf
they have the same extremitieg(, p(0) = q(0) andp(1) =
g(1)) andp can be continuously deformed to €jt that is if
there exists a continuous map: [0, 1] x [0,1] — X such
that, for allt € [0, 1], h(t,0) = p(t) andh(t, 1) = q(t), and,
forall u € [0, 1], h(0, u) = p(0) = g(0) andh(1, u) = p(1) =
g(1) (the magh is called gpath-homotopy This relation on
paths is actually an equivalence relation. We wrip¢ for
the equivalence class @ If p,q are two paths inX such
that p(1) = q(0) we can define the produpt g by

_[p) ifteo,}]
(p'Q)(t)—{q(zt_l)ifte[%,zll

This product is well defined on equivalence classesgy [
[a]l =[p-d]- Let xbe a point ofX. A loopat xis a path inX
which starts and ends &t The product of two loops atis a
loop atx and the setr(X, X) of equivalence classes of loops
at x is a group for this product. It is called tiendamental
groupof X (with basepoint

4.1.2 Finite paths in posets

In a posetX, a functionf : [0,1] —» X is astep functionf
there exist finitely many intervals;§;_, (r > 0) such thatf
is constant on each intervaland [Q 1] = U, I;. If for all
i € [1,r], sup(i-1) = inf(l;) and f(li_1) # f(I;), we write
f = Xi_ox1, where{x} = f(li). A finite pathin X is a
path inX which is a step function. The sequendg;(, is

tion 3 behave relatively to the classical notions of path incalled theintervals sequencef p and the sequendes);_,

Z" andF". The main results are Theorems 3 and 4. Theothetrack of p. A finite path isregular if there is no single-
rem 3 states thaf, induces a bijection between the set of ton in its intervals sequence. Two comparable paths (for the
the connected components of the object (resp. backgroundpmponentwise order), finite or not, with same extremities
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are equivalent. In the sequel, we denotedtire componen- 4.2 Mapping paths iZ" onto arcs irf"

twise order on paths. The next four results have been proved

in [37]. Let y andy’ be two arcs inf". We writé® y < y’ if there
exist two path < p’ in F" whose tracks arg andy’ (all

o . : e
Proposition 12 The track of a finite path is an arc and any paths inf" considered in the sequel are regular finite paths).

arc is the track of a regular finite path. Definition 2 Let w be an adjacency relation & andy =

(P, (r > 0) be anw-path inZ". We define the ar¢(y)
Proposition 13 A step function p= Y[ ,x1, is a finite in F" by {(y) = (qj)J?':O with g; = p; if j is even andy; =
path in X jffor alli € [0,r — 1], x is adjacentto %1  Qj_1 N Qj.1 if jis odd, for allj € |[O,§r]|.

and % < X1 © sup(;) € |;.
$S % Pli) € Itis obvious that the sequence of facég) defined above

is actually an arc iff" which is itself the track of a regular

The productof two arcs &)i_, and ), is defined by finite path inF" (Proposition 12).

A . \S — 1 —
0o B0 = 00, Xe Y1 - -+»Ys) provided thag = Yo The following proposition states thatassociates to a
An arcy = (%), (r > 2) is anelementary stretching (in

o ) , ; path in the object (resp. in the background), of a digital
X) of an arcy” if for ,somejre [L.r-11x = (),(i i=0,i#] image4, an arc in the object (resp. in the background) of
or (xj-1 = Xju andy’ = (X)i_gj,j1j»)- AN AICY IS ade- 0 o noley imadier, (1) under the condition that the con-
formgtlonof an arcy” if there exists a Sequechinszo of nectivity functione has been well chosen. The main con-
arcs inX such thayo = v, xs = x’ and for anyi € [1, ], sequence of this proposition is that the images of the con-
nected components of the digital object (resp. background)

eithery; is an elementary stretching @f_1 or vice versa
Let x be a point inX. "Being a deformation or equal” is an are included in the connected components of the image of
the object (resp. background).

equivalence relation in the set of arcsXrfrom xto x. The
set of equivalence classes, denote@¥, X), is a group for
the arc product. Proposition 14 Let (a,8) be a pair of adjacencies oA".

Let £ be the connectivity function associated(tg8) (see

Theorem 1 Two finite paths are equivalenfthey have the Table 1). Let xe {0,1). Letw = aif x = 1 andw = S if

same track or the track of one of them is a deformation o€ = 0- Letd: Z" — .{0, 1_} be an image irZ" andu = gg(/?)
the track of the other. be the corresponding image iff'. Lety be anw-path in

A71({x}). ThenZ(y) is an arc ing~*({x}).
Theorem 2 Let x€ X. The fundamental groug(X, X) of X Proof The proof is proposed for8) = (3" - 1,2n) and

with basepoint x is isomorphic to the grogfX, x). (n =3 and @,B) = (18,6)). The casesy,8) = (2n,3" - 1)
and f = 3 and @, 8) = (6,18)) are obtained by duality (see
Remark 1).

4.1.3 The digital fundamental group Bf Case {.8) = (3" - 1,2n). Here,e(k) = 1 for all k € [1, n].

If y = (p)l_, (r > 0) is ana-path inA7*({1}), from Propo-

A discrete analogue of the concept of fundamental groupition 8, we derive directly that(pi_y N p;) = 1 for all
has been proposed in digital topology [4]. lre¢ {2,3}and i € [1,r], thatis{(y) is an arc inu=({1}). If y is aB-path in
X C Z". The definition of the product for digital paths is A7X({0}), then dimi_1 N p) = n— 1 and thus«(pi_1 N ) =
straightforward but not so is the notion of equivalence beu(pi—1) vV u(pi) = 0v 0 =0foralli € [1,r]. So,<(y) is an
tween digital paths or loops. Two patt&)[_,, (b)), (r.s> arc inu~1({0)).
0) with same extremities ardirectly equivalent (in X} if Casen = 3 and ¢, 8) = (18, 6). The connectivity function
they difer only in a unit lattice cube dt" provided that, if ¢ is such thai&(3) = 1 ande(2) = -1. If y is an 18-path in
n = 3 and the pair of adjacencies is, &), the cube must A7%({1}), then all the faces of have a dimension greater or
not contain two diametrically opposite points notXn equal to 1, thereby we can use the direct part of Proposition 8

Finally, two pathspo, pr (t > 0) with same extremities to conclude that(y) is an arc inu({1}). If y is a 6-path in
areequivalent (in X)if there is a sequencey('_, of paths A71({0}), we use the proof of the case.8) = (3" - 1,2n).

such that, for all € [1.], piis directly equivalent tgi-s. The following proposition is straightforward.

7 In [11], we find another (equivalent) form of the previous defi © The notationy < y’ does not mean thatis an order (it is actually
nition. Two pathsp, q aredirectly equivalentf there exist four paths  only a pre-order on regular finite paths). For instanceg € b < ¢
Po, P1, Py, P2 Such thatp = po.pr.p2, g = Po.P,.P2, P andp; have  are three distinct faces @, it can readily be proved thag(c) <
the same extremities and are both included inxa2square ifn = 2 (& b,c) <(ac0).
orn = 3 and the pair of adjacencies is, #), or in a 2x 2 x 2 cube 9 In this article, the terminology “complex image” denotesuaset
otherwise. of F".
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Proposition 15 Let w be an adjacency relation oA". The  before examining the last case, that we cannot claim that
corresponding functiod is a homomorphism for the paths yg is anw-path, but just a (83— 1)-path, since we do not
product and the arc product: for all-pathsy,y” € Z",  know if a andb are w-adjacent. Now, let us consider the
Lyy)=2().L(Y). casen = 3ande = (-1, 1, —1) which corresponds te{8) =
(6, 18). In this case, if ding) = 1 and dim@)) = O, it may

The injectivity of is obvious since two distinat-xels  happen thay ¢ x~*({1}) (see Figure 12). Let us suppose
a.b € Z" are associated to distinct facets’e F". Propo-  thatg ¢ 4~1({1}) (and thus, dimg’) = 1 and dimg) = 0).
sition 16 establishes the surjectivity up to deformati@m.  From Proposition 10 and Table 2, we know that there are at
arcy fromatobin an object (resp. in the background) of the |east 6 facets ig|* and at most 2 facets f * (and actually,
complex image is the deformation of an ay) for some  here are two facets ig*, aandb). It follows that the facet
pathy from a to b of the object (resp. background) of its ¢, whose intersection withis g, is in~({1}) (see Figure 12
associated digital image (if the complex image is assatiate |0k at the only possible configuration), andhares a
to such a digital image). Lemma 3 is the basic block for the; ¢5ce withb. We call this 2-facdY. It is plain thath’ e
proof of Proposition 16. 1~Y({1}). So, we seto = (a, ¢, b) anddo = a1, +gly, + &1y, +
h'1;, + blk whereJd; U J, U Js = J, max(y) = inf(J,), and
supdz) = min(J3). As previously observed, it may happen
that, fory = g ory = g, dimly) < n— k wherek = 2
if @ = 2n, k = 3if @ = 18. Let us writed for the facets
following y in £(yo) (d = b ord = ¢). From Proposition 9,
we derive that there exists an gyc= /(y1) from a to d
in y" wherey; is anw-path froma to d. By introducing, if
necessary, this patyy betweena andb if yo = (a,b), or
betweena andc if yo = (a,c,b), we build in 27({1}) an
w-pathy from a to b. Since thisy is in y', one can readily
build in x~1({1}) a pathg > go whose track is/(y). Hence,
the result holds.

Lemma 3 Let(a, ) be a pair of adjacencies di". Lete be
the connectivity function associated(ia ). Let x € {0, 1}.
Letw = aif x =1andw = Bif x = 0. Letd: Z" — {0, 1} be
an image irZ" andu = £.(1) be the corresponding image in
F". Let p be a path ini~({x}) whose track igf, g, h) with

f > gc h. Letab e Z" be two xels im~1({x}) such that
a> f and hc b. Then, there exists an-pathy in A-({x})
from a to b and a path q, & p, whose track ig(y).

Proposition 16 Let (a,8) be a pair of adjacencies of".
Let £ be the connectivity function associated(ég). Let
X € {0,1}. Letw = aif x = landw = Bif x = 0. Let
A:Z" - {0,1) be an image irZ" andu = (1) be the
corresponding image ifi". Let ab € Z". Lety be an arc
from the facef to the faceb in z~1({x}). Then, there exists
anw-pathy from a to b in171({x}) such that/(y) is a defor-
Fig. 12 In grey and red: an arc i in a (-1, 1, ~1)-regular image. In ~ mation ing~({x}) of y in x~%({x}). Moreover, if p is a path

this arc, two consecutive grey facets share a O-face (inbat}heir  in ,~1({x}) whose track ig, there exists a path g im({x}),
intersection does not belong to the object. q> p, whose track ig(y).

Proof The proof is proposed fox = 1. The casex = 0 is

obtained by duality (see Remark 1). Let (g;)[_, (r > 0)
Proof The proof is proposed fox = 1. The casex = 0is  be an arc from the facet fo the facetb in u1({1) and
obtained by duality (see Remark 1)af b, we sety = (a) p = Yi_oGl;, be a path whose track js (Proposition 12).
andq = alj 1 and we are done. Let us now suppose thatWe build the proof by induction on, the size of. If r = 0,
a#b Wesety =anb.Letp = f1, + gl; + hlk (where the statement is obvious. Let us now suppose that the prop-
I, J K are intervals included in [@]) be a path. Sinca >  erty is true whenever the size gfis strictly less than an
f >gchcbh wehaveg c ¢g.If ¢ = -1, sinceg € integerr > 2 (r = 1 is impossible). Lef € [1,r — 1] be
u1({1}), from Proposition 1 we derive that all facetsgh  the lowest integer such thagt is a local minimum of, i.e.,
have value 1 and, therefore, all facetsgih have value 1. such that]j_; > g; € gj.1 (remember thatjp = &andg, = b
Thus,g’ is in u~({1}). If & = 1, still from Proposition 1, we are facets) and lét € [ j + 1,r] be the lowest integer such
derive thaty’ € x~({1}) since there exists at least one facetthatqy is a local maximum of, i.e. 0.1 C Ok D Oks1. Let
in (1) ngT. If n = 3 ande(3) = 1, we derive from t be the centre of the intervdk ande : [0,1] — [0,1]
Proposition 8 that if ding’) > 1, theng’ € x%({1}) and if  be the bijective function which putson % and is linear
dim(g’) = 0, theng’ = gs0,g’ € u~1({1}). In all the previous between 0 and and betweer and 1. We havep o ¢! =
cases, we s&b = (a b) andqgo = a1, +g'1;+blc. Observe, (3K, q; L) 1))-(Zi—k AiL2p-1)07)) Wherel! = 1;if 0 <i <k,
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I =1n[0,t], I/ =lkn[t,1]andl” = I;if k<i <r. From
Proposition 5, we derive that there exists axel Z", such
thatc € 171({1}) andak < ¢ (if gk is a facet off", ¢ = 0k)- As
Clg-1)07) + Zizksn Gil2e-1)7) IS @ path frome'to b whose
length is strictly lower tham, by the induction hypothesis,
there exists an-pathy® from cto bin 1-%({1}) and a path
g® from ¢ to b such thatz(y®) is the track ofg® and
q? > Cley1p) + Tickr Gl > i tile—y0)-
On the other side, from Lemma 3, we can definaih({1})
an w-pathy® from a to ¢ and a path inu1({1}), g >
alay) + Gileam) + tlegw > T ilea), wherel =
U1 andd = U1 I whose track ig(y\Y). Eventually,
we sety = Y1 .y@ andq = q.q®. As ¢ is a morphism
(Proposition 15){(y) is the track ofg and from Lemma 10,
we haveq > po ¢ 1, therebyqo ¢ > p. Of courseg o ¢
has the same track gsso the result holds: sinago ¢ > p,
the trackZ(y) of q o ¢ is a deformation of the track of p
(Theorem 1).

Theorem 3 Let (@, 8) be a pair of adjacencies oA". Let

& be the connectivity function associated(tgp). Let x €
{0,1}. LetA : Z" — {0,1} be an image irZ" andu = (1)

be the corresponding image #'. Then the function which
associates to the xel @ Z" the faceta € F" induces a one-
to-one correspondence between the connected compone
of A71({x}) and the connected componentgof({x})

Proof The proof is proposed fox = 1. The casex = 0 is
obtained by duality (see Remark 1). L=t (resp.=,), be
the equivalence relation defined @n'({1}) (resp.u~1({1})),
by a =, b (resp.a =, b), iff a andb belong to the same
connected component af'({1}) (resp.u~*({1})), i.e., there
exists a path frona to b in 171({1}) (resp.x~1({1})). From
Proposition 14, we can define the quotient ngafpom the
set of connected components bft({1}) to the set of con-
nected components af 1({1}). Let C be a connected com-
ponent ofu%({1}) and f be a face irC. From Proposition 5,
we derive thaf is at least included in one faca& 1 1({1})
soa = /(a) € C (for (f,a) is an arc). HenceC = ¢(Ca)
whereC, is the connected component.dfl({1}) including
aand, as we have not made any hypothesi€ anis surjec-
tive. Leta, b € Z" be to xels such that =, b. Proposition 16
indicates that there exists arpath fromato b in 171({1})
soa =, b. This establishes the injectivity af so/ is a
bijection.

4.3 Fundamental groups

The aim of this section is to compare the digital fundamen
tal group defined by Kong [4] for subsets®%, n € {2, 3},
with the fundamental group of subspacesFdf Thanks to
Theorem 2, we can use arcs as well as pattg'im order

to perform this comparison.

Proposition 17 Let (a,8) be a pair of adjacencies of".
Let £ be the connectivity function associated(ég). Let
X € {0,1}. Letw = aif x = landw = Bif x = 0. Let
A Z" - {0,1} be an image irZ" andu = /(1) be the
corresponding image . Lety,y’ be two equivalent-
paths inA7({x}). Then,{(y’) is a deformation of(y) in

1),

Proof The proof is proposed fox = 1. The casex = 0

is obtained by duality (see Remark 1). Sintés a homo-
morphism (Proposition 15) and “being a deformation” is an
equivalence relation, we derive from the definition of digi-
tal homotopy equivalence (see section 4.1.3) thatflices

to establish the lemma for two digital pathgy’ having the
sames extremities and included in a&x2 square or in a

2 x 2 x 2 cube. That is, the loof(y.y'~*) can be deformed
(in 1~1({x})) in a constant arc. So, lgtbe a closed path in
A171({1}) from ato a (a € Z") included in a unit square (if
n=2orn=3andB = 26), or in a unit cube. If the length
of v is less than or equal to 2 then the property is obvious.
Now, we assume that the lengthyofs greater than or equal
to 3. We denote byn the face inF" laying at the centre of
the unit square or cub@ includingZ(y) and we observe that
the arc(y) is included inm'. Since at least three facets©f
helongs tq:1({1}), we derive from Table 2 that, if = 3"-1

or (n = 3 anda = 18), thenm € x~1({1}) and we can eas-
ily build'® a sequence of elementary stretchings frat¢
Z(y)*. Hence, from now, we suppose that 2n. To end the
proof, we check all the loopgwhich can be drawn in a unit
square or a unit cube " (up to rotations and symmetries).
We can suppose without loss of generality 4@ is a sim-
ply closed arc in the sense that each facé(iy) is passed
through only once. The reader can check (in Figure 13) that
in each case the arfy) can be deformed (ip~1({1})) in a
constant arc by introducingin £(y).

Lemma 4 Let(a,B) be a pair of adjacencies dif". Lete be
the connectivity function associated(ta 8). Let xe {0, 1}.
Letw =caifx =1landw =Bif x = 0. Letd : Z" — {0, 1} be
animage inzZ" andu = Z.(1) be the corresponding image in
F". Letab e Z". Lety, v’ be two arcs ini~2({x}) fromatob
(a,.be Z"). If ¥ is an elementary stretching gf then there
exists in1~1({x}) an w-pathy from a to b such thag(y) > v
and{(y) > x'.

Proof There are two —very similar— cases in the definition
of an elementary stretching, so we only provide the proof
for one of them. Ley = (f))[_, (r > 1). Suppose that’ =

-10 We could also invoke the existence of a smallest elementrtoede
the contractibility ofC N A71({1}) (see,e.qg, Corollary 8 in [37]) and
thus its simple connectivity.

Yf 2(y) = (f), (r > 2 andfy = f; = a) we use the sequence of
elementary stretchingdd) — (fo,m, f;) — (fo,m, fr_, ;) —» ... —
(form. 1. ) = (fo. fr..... F).
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P . he 9 e g e g track of p” is £(y’). We setp = Y1, fil,, p' = 25,0l
' s andp” = ZLO hilk (r,st > 0). We prove the lemma by
a‘ ¢ a‘ c ¢ induction onr, the size ofy. Forr = 0, the result is obvious.
a b b b b Let us now suppose that the property is true whenever the
@ (b) © O size ofy is strictly lower thanr (r > 2 for r cannot be 1).

Fig. 13 We use the dual order iR to represent the unit squécebe: Let j € [1.r] be the lowest integer such thfﬁlt is a local
the facets are depicted by points, the{ 1)-faces by edges and Minimum ofy, i.e, such thatf; ; > f; c fj,; (remember
so on (the facem is then seen as the squéi@ b, c,d} or the cube  thatfy, = a andf, are facets) and lejf € [j + 1,r] be the
{a,b,c,d, e f,g,h}). The arc(y) is drawn like a solid black curve. lowest integer such tha‘!;/ is a local maximum of. As fi'

Since (1) is a regular image, whatever the connectivity function . | | . o . | of =
&, when two 46-adjacent vertices (which are actually facets) of the!S @ loca maximuml is an open interval o [@] (Propo-

depicted polyhedron are af(y), the edge between them belongs to Sition 13). If j = r, that isfj = b, then{(y) and{(y’) are
A"({1}) and when the four edges of a square arez¢p) then the included infjT soy andy’ are included in a samex2 square

square between them belongsttd({1}). (a) All the vertices, and thus of Z" (if dim(f;) > n— 2) or in the same % 2 x 2 cube of
m, are inA1({1}). (b, c, d) These three figures are only concerned by,_, if di 1= .
(@.B8) = (6,18),i.e, £ = (-1,1,-1). In each figure, the length ofis z" (it dim(fj) = n—3). Moreover, ifn = 3, (@, B) = (6, 26)

greater than or equal to 6, so, from TablenZz A~1({1}). (henceg = -1) and dimf;) = O, from Proposition 1, we
derive that there is no facet with value-Ix in ij. So, using
i o one or the other version of the definition of digital equiva-
(fi)iZo-(fio, F. figr1).(F)i_i g With i € [0, 1 — 1]. We can as-  |gnce, we can conclude that the agcandy’ are equivalent.
sume without loss of generality th} c fi,.1. If f C fis1,  Otherwise {<r,wesetl; = Jy,Zwith0 <y<z< 1.
from Proposition 16, we can build an-pathy in 17X({x}) etk e [0,s] and k' € [O,t] be the even integers defined
from a to b and two pathp = Y/, fil, andqin x1({x}) by z € JU Jes andz € Ky U Kiar. Sincep < pl, p < "
whose tracks arg and{(y) and such thag > p. We set  anqg, h, e E? (in particularJ and Ky are open on the
y = max(i,) = inf(lip+1) (sincefi,  fi.1, the intervalliyis ety this definition ofk andk’ ensures thagy 2 fi € he
closed on the right (Proposition 13)). Lt Obe arealsuch 5 thereby thag e f/ foralli < k andh e f' for
thaty—2¢ € li, andy+26 € li,,1 (0 exists sincepisregular). g1 i < k. If fi € ]Fﬂ,lthen necessarilgy = he = f;
We setp’ = S0 fily + fio Lt + T11 + figsa Ly + Xicigr2 fi L and we sej = (fj). Otherwise (dim{;) < n), we set
wherel” = [y -6,y + 4], if T c fi; andl” = Jy,y + d] if X6 = (G fjr, he). In both casesy; is an arc inu~1({x}) thus,
fip © T C figea, I =1ig \ 1”@ndl” = li41 \ 1. Proposition 13 from proposition 16, we derive that there existsaapath
ensures thap’ is actually a path and it is plain that the track ¥y, in I7Y({x}) such that(y}) > x% We set?(y.) = (&)’
S, ] ] 0 0 0 0 i=0
of p’isy’ andp’ < p. We have therebp’ < p < g. Hence, (u > 0) and we havey = g¢ ande, = h,. Moreovery),
¢0) = x and{(y) > x'. If fipa 1, still using Proposi- 5 5 arc inf! which is included inf' so L(yh) is also an
tion 16, we start to build am-pathy” in 17({x}) from a to ) ) J , 0_1
b and two pathgy = Z:io fiL, + f1 + Zir:io+1 f1,, q in arc in fj . Letyo, y1 andy] be thew-paths in1™*({x}) such
Y({x)) whose tracks arg’ and/(y’) and such thay > pr.  thatd(vo) = (g o C01) = (@) andi(yy) = ()i, We

We setp = 319 fily, + figsaly + X 5 fil, Wherel” = §et7” = 70.7071- Sinced(y”) = {(y0)-{(vp)-(Nes .. hy),
| Uli,+1. Thenpis a path whose track jsandp < p’ < ¢f. it differs from¢(y') = (ho, .., hi).(hw, ..., hy) only in /.
S0,((y) = y andZ(y') = x'. So, whatever is the adjacency relation, we can conclude as

above that the arcg’ andy’ are equivalent.
Lemma 5 Let(a,8) be a pair of adjacencies di". Letebe  In order to use the induction hypothesis, let us now define
the connectivity function associated(ta 3). Let xe {0,1}.  three new paths. (Of course, we still use the rule defined by
Letw =aifx=1andw =Bif x =0. Letd:Z" — {0,1}be  Proposition 13 in order to get paths, this will not be indézht
an image inZ" andu = /(1) be the corresponding image anymore.) Previously to the definition of the three paths, we
in F". Let ab € Z". Lety be an arc from the facei to the needto chooseareae ]y, Z N (kU 1) N (K UKpos1).
facetb in u~1({x}) andy,y’ be twow-paths from ato b such Such a real exists sinck U Jx,1 andKy U Ky,1 are open
thatZ(y) > y andZ(y’) > x. Theny andy’ are equivalentin  on the left and contaia. The first path is obtained from
A71({x)). by removing all faces befor§, and replacing them by the
facetgr: pr = Gkljoy + f{ Ly + Przy wherep, means the
Proof Let p,q, p’, ' be four paths in~*({x}) whose tracks  restriction of the functiorp to the intervall. Since we re-
are respectively, x,{(y).{(y") and such thap < p’ and  move at least two facesf( and f;) and add just one, the
g < q.If p # g, since these two regular finite paths havelength of the track ofp; is strictly lower thanr. We must
the same tracks, the intervals of their intervals sequenceseware that all new paths are regular. This implies to check
are homeomorphic (Proposition 13). Hence, there exists he first interval inpy1;. This interval is §, 7 (remember
homeomorphismp, piecewise linear, such that= pop. We  thatly,Z = I;) and is not a singleton. The second path is
setp” = q opt. Asq > g, we havep” > p. Obviously, the
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obtained in a similar way fronp’ by removing all faces be- where ] denotes the equivalence classydfor the equiva-
fore gy, so its track i£(y1): P} = 9klom + pfml]. The first  lence relation on digital paths @" on the left side and for
interval in pfml] is either associated @ (and then has to be the deformation on arcs d&f" on the right side), is well-
merged with [Om), or is associated tgy,1 but in this case, defined. Proposition 15 then states tlfails a morphism.
by the definition ofk, z is also in this interval so the first Propositions 16 and 18 give the surjectivity and the injec-
interval can never be a singleton. The third pathis ob- tivity of ¢, respectively. We conclude that the two groups
tained fromp” by removing all faces befotg, and putting  7p(171({x}), a) andp(u~1({x}), &) are isomorphic and, since
in front of hy the faces of the argy with, for the choice p(u™t({x}), @) andr(u~1({x}), &) are isomorphic (Theorem 2),
of the intervals, the constraint thal’ must be equal t@,  the following theorem holds.

andpy on [0,y[: Py = Gklpy + Xty &l + Pim1) Where

the intervalsK! are supposed to be well-defined. The trackTheorem 4 Let («,8) be a pair of adjacencies oi". Let

of py is {(yg).C(y7) = {(¥{¥y)- The firstinterval inpﬁm] iS & be the connectivity function associated(tgg). Let A :
either associated to, = e, (and then is to be merged with Z" — {0, 1} be an image irZ" andu = £.(1) be the cor-
K!), or is associated thy,1 but in this case, as aboveis  responding image if". For any ae€ 17({x}), the digital
also in this interval so the first interval can never be a sinfundamental group of~%({x}) with basepoint a is isomor-
gleton. Hence, we have three regular pathsp;, py equal  phic to the fundamental group of the poset!({x}), <) with

to p,p’, p” on [m, 1] so we havep; > p; andp; > p1on  basepoing.

[m, 1]. The three paths are equal @) on [0,y[ and, on
[y, m[, p1 = fj; which is a face included ip; = gk and in all
the faces of, the track ofp;. Thus,p] > pr andpy > p1
on [0, 1]. We can now apply the induction hypothesis: ilte
pathsy; andyg.y; are equivalent. Furthermore, taepaths | this article, amodus operandias been proposed to em-

Y = yoyrandy” = yo.y,.y; are equivalent. Since, we have peq digital binary images, equipped with a pair of standard
proved before thag” andy” are equivalent, we can eventu- ggjacencies, in the space of cubical complexes. In paaticul
ally conclude thay andy’ are equivalent. it has been proved that it preserves the connected compo-
nents of both object and background and preserves also the

5 Conclusion

Proposition 18 Let (a,8) be a pair of adjacencies oZ".

Let xe {0.1}. Letw = e if x = 1andw = gif x = 0. Let  (digital) fundamental groups. _ _
1:7" - {0,1) be an image irZ". Let ab € Z". Lety,y’ These results, associated to those proposed in [37], jus-

tify the soundness of all contributions previously devoted
to design homotopy type-preserving binary image process-
ing methods, especially concerning the correctness of thei
behaviour with respect to the “continuous” topology of the
Proof Lety,y’ be twow-paths fromato bin 27({x}) such  handled digital objects. They also permit to establishdink
that{(y’) is a deformation of (y). By definition, there exist between image processjlagalysis methods developed ei-
an integer > 0 and a sequenc® of arcs inu~1({x}) (with  ther in classical digital space&") or cubical complexes

1 = £(2) whereg is the connectivity function associated to (F"), and to potentially unify some of them.

(@.p),S = (xo=¢(),-- - xi»---.xr = {(¥')), such that, for Processing binary digital images without topology al-
eachi € [1,r], eithery; is an elementary stretching f 1 teration has been an active research field for several years.
or yi-1 is an elementary stretching gf. From Lemma 4, we Nowadays, an increasing interest for the extension of this
derive that there exists a sequerSgeof w-paths ini™*({x}),  field to the case of coloylabel imagesi(e., not only binary
Sp=(1.---%s....yr)such thatforali € [1,r], £(vi) >  images, but more generallg-ary ones) can be observed.
xi-1 and{(yi) > xi. Then, from Lemma 5, we deduce the Some applicative methods devotedpary images have al-

be twow-paths from a to b im=({x}). If the arc/(y’) is a
deformation inu~1({x}) of the arc(y), theny andy’ are
equivalent im—1({x}).

sequence of equivalenge~ y; ~ ... ~ yr ~y'. So he have ready been proposed [38-40]. However, the putative preser-
y~v. vation of topological properties by such methods generally
relies onad hochypotheses or incompletely proved theoret-

Leta e 171({x)). Letzp(2171({x}), @) be the digital funda-
mental group oft~({x}) with basepoint andp(u~1({x}), &)
be the group of arcs ip~1(x) from a to &, up to deforma-

ical bases.
From a theoretical point of view, the issue of topology
and topology preservation in digitg-ary images has not

tions. . ; ;
From Propositions 14 and 17, we know that the functionbeen.mt?nSNGI.y considered yet [41_.46]’ qnd the proposed
7 defined by contributions still do not provide solutions in the most gen

eral cases ifZ" andF". In this context, further works will
o (X, a) = pu(x), ) now consist in extending the approach proposed in this arti-
[y] = [Z0(y)] cle by defining a mapping enabling to embedry images



hal-00512270, version 1 - 29 Aug 2010

16

o ——00 - — 00— — o

| (I (! |

| (I (! |

¢ ——o66— o6 —— 90

(@) (b) ()
Q/\\ /.Q/\\ /.o/\\ /.Q/\\ /.Q/\\ /o /\\ /.Q/\\ /OQ/\\ /OO/\\ /.Q/\\ /.
poTe LT b Te b T e T T o e Ly yTe L Te b Te b T o
‘/‘11/11‘/\!/\1/11/‘11/11“\\!‘/‘\\\‘/\\!
h h ] h ] hel s — O he] ko)
Vel R Vet Pt At G APk MY
(d) (e) 0] @) (h) 0] 0) (k) 0] (m)

Fig. 14 Configurations (up to rotations, symmetries and dualitydus the proof of Lemma 8 (see text). (a—c) 2-D configuratidhe full
line indicate the 1-dimensional facet which satisfies ttapeprty. (d—m) 3-D configurations; the full lines indicate tb-dimensional facet which

satisfies the property.

from Z" to F" in a sound and tractable fashion, in particu-and the only one, numbered (k), in which no facet of the bognda
lar to allow the development of homotopy-type- preservmgOf f! contains half of the points corresponds to the configuratioa

image processing procedures.

A Auxiliary properties on complexes and posets

Lemma 6 Let f, g be two facets d". If f ng # 0 then, for all he F",
we have ng<h=(hc forhcg).

Proof Setf = /1", f,g = II",g and f ng = II" k with f;,g € F}
andk € Fl UF} foralli € [1,n]. Let h = I77 by, with by € F} U,
be a face which cover§ n g. Then, there existy € [1,n] such that
hio € F%, kig € Fé, fioﬂgio = kig C hio and, foralli # ig, k = hj = fiﬂgi.
But, readily, there exist only two facesli} which include a given face
of F§. Thus hi, = f, orhi, = gj, and, straightforwardlyh € f orh c g.

Lemma7 LetO<m<n. Let fe F,,. Then:

() Card(f™*) = 2™,

(i) For {g;, 2} € opp(f). 1+ = gl *Lgh" (where denotes the disjoint
union).

Proof (i) We can assume, without loss of generality, that [/, I;
wherel; € F} if i < mandl; € F} otherwise. Obviously, for each
(m+1 < i < n) there are two sets ifi} including |; and therefore,
there are 2™ products[ {7, li X [T{Ly.1 Ji Wherel; c J; € F; for each
ie[m+1,n]

(i) We apply the first part of the lemma to the three fadegi, g.:
there are 2™ facets inf" and 2! facets ing} as in g; Since, by

definition of oppg} N g} = 0, we conclude that™ = gl* Ligl*.

The following two lemmas use the definitions of Caahd Card
given in Section 3.4.

Lemma 8 Let f be a k-face irF" (with n—- 3 < k < n-1). Let

r e [1,2%1]. Let E be a set of facets iff fuch thatCard (E) > 2r.
Then, there exist two facestge F", opposite with respect to f such
thatCardEng') > randCard€nh') > r.

Proof We setm = n—dim(f) = n — k. Thanks to the duality on the

trihedron.

Lemma9 Let f be a k-face irF" (with n—-3 < k < n-1). Let
r e [1,27%1]. Let E be a set of facets in' fIf there exist n- k
faces which cover f and whose stars contain at least r faddfs then
Card'(E) > 2r — 1.

Proof As in the proof of Lemma 8, thanks to duality, we can replace
the statement of this lemma by the following one that we witive:

“if cis a facet of inF" (1 < n < 3), E a set of O-faces ik! such that
there exisn facets ofc!* which contain, each, at leastaces ofE (1 <

r < 2"1), then CardE) > 2r — 1 orr = 3 andE is in the configuration
depicted in Figure 15(b) (in which case, C&#JE 2r — 2)". If r = 1,
the property is obvious, as is the case where two ofrtliacets of
c'* which containr faces ofE are parallel (since two parallel faces
do not share O-faces, in this case C&)g 2r). Hence, in the sequel
we assume that all thegefacets share a same O-face. Moreover, it
sufices to study minimal configurations, that is, setsvhich satisfy
the hypothesis while none of their proper subsets does.4f2 and

r = 2, there is only one such minimal configuration (up to rotagio
and symmetries), depicted in Figure 15(a). Wines 3, letb, f,| be
the three facets af** that contair faces ofE, t be the O-face contained
in these three facets, andy, zbe the O-faces contained in exactly two
of these three facets (in Figure 15(b-&)f, | are located at the bottom,
front and left positions, respectively). if= 2 the first two 0-faces of
E contained irb cannot be shared withandl (but can be shared with
either f or I). Thus, there must exist at least a third faceEoh f or

I, implying that CardE) > 3. If r = 3, the only minimal configuration
with {t,X,y,z} € E is depicted in Figure 15(b) and the only minimal
configuration, up to rotations, withe E and Card{x,y,zZ} N E) = 2

is depicted on Figure 15(c). The case Céxgy,z} N E) = 1 is not
possible. The only minimal configuration with¢ E is depicted on
Figure 15(d). Ifr = 4, the only minimal configuration is depicted on
Figure 15(e). The reader can then easily check from Figu(e—£)
that the statement of the lemma is true.

ordering inF", the statement of this lemma is a consequence of the

following one that we will prove: “iff is a facet off™ andE is a set of

Lemma 10 Let(T, <) be a poset. The path product is compatible with

2r O-faces inf!, not in the configuration depicted in Figure 14(k), then the order relation: for any gb,c € T and any paths g p’ fom ato b

there exists a faceg of f1* which contains exactly elements of”.

Since the result is obviousii = 1 and we have restricted our lemma to

m < 3, we can check all configurations, up to rotations, symresgind

duality (e.g, choosing six points among eight amounts to choose two o

them). These configurations, in 2-D and 3-D, are depictedgarE 14

Proof Lett e [0,1]. Ift < 5

and g< g frombto c, we have.g< p'.q'.

3, then,p.a(t) = p(2) < P'(20) = P .4 (V).
If t > 35, thenp.q(t) = q(2t - 1) g2t-1)=p.g({).

_2,
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Fig. 15 Configurations used in the proof of Lemma 9 (see text). Black20.

points: faces oE. Black edges: edges of three facets of the cube that
contain at least faces oft. (a)n= 2 andr = 2. (b-d)n=3 andr = 3

(e)n=3andr = 4. 21.
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