Morphological annotation of Korean with Directly Maintainable Resources - Archive ouverte HAL
Poster De Conférence Année : 2006

Morphological annotation of Korean with Directly Maintainable Resources

Résumé

This article describes an exclusively resource-based method of morphological annotation of written Korean text. Korean is an agglutinative language. Our annotator is designed to process text before the operation of a syntactic parser. In its present state, it annotates one-stem words only. The output is a graph of morphemes annotated with accurate linguistic information. The granularity of the tagset is 3 to 5 times higher than usual tagsets. A comparison with a reference annotated corpus showed that it achieves 89% recall without any corpus training. The language resources used by the system are lexicons of stems, transducers of suffixes and transducers of generation of allomorphs. All can be easily updated, which allows users to control the evolution of the performances of the system. It has been claimed that morphological annotation of Korean text could only be performed by a morphological analysis module accessing a lexicon of morphemes. We show that it can also be performed directly with a lexicon of words and without applying morphological rules at annotation time, which speeds up annotation to 1,210 word/s. The lexicon of words is obtained from the maintainable language resources through a fully automated compilation process.
Fichier principal
Vignette du fichier
BHLN.pdf (149.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00621506 , version 1 (17-11-2012)

Identifiants

  • HAL Id : hal-00621506 , version 1

Citer

Ivan Berlocher, Hyun-Gue Huh, Eric Laporte, Jee-Sun Nam. Morphological annotation of Korean with Directly Maintainable Resources. Poster session of 5th International conference on Language Resources and Evaluation (LREC'06), May 2006, Genoa, Italy. pp.1803-1806, 2006. ⟨hal-00621506⟩
599 Consultations
167 Téléchargements

Partager

More