Finding the median of three permutations under the Kendall-tau distance - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Finding the median of three permutations under the Kendall-tau distance

Résumé

Given m permutations π^1 , π^2, ... π^m of {1, 2, ... , n} and a distance function d, the median problem is to find a permutation π* that is the "closest" of the m given permutations. Here, we study the problem under the Kendall-τ distance that counts the number of pairwise disagreements between permutations. This problem is also known, in the context of rank aggregation, as the Kemeny Score Problem and has been proved to be NP-hard when m ≥ 4. In this article, we investigate the case m = 3.
Fichier principal
Vignette du fichier
Finding_the_median_of_three_permutations_under_the_Kendall-tau_distance.pdf (112.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00620459 , version 1 (13-02-2013)

Identifiants

  • HAL Id : hal-00620459 , version 1

Citer

Guillaume Blin, Maxime Crochemore, Sylvie Hamel, Stéphane Vialette. Finding the median of three permutations under the Kendall-tau distance. 7th annual international conference on Permutation Patterns, Jul 2009, Firenze, Italy. pp.6. ⟨hal-00620459⟩
247 Consultations
686 Téléchargements

Partager

More