Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2012

Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants

Résumé

Let {F_n} be a normalized sequence of random variables in some fixed Wiener chaos associated with a general Gaussian field, and assume that E[F_n^4] --> E[N^4]=3, where N is a standard Gaussian random variable. Our main result is the following general bound: there exist two finite constants c,C>0 such that, for n sufficiently large, c max(|E[F_n^3]|, E[F_n^4]-3) < d(F_n,N) < C max(|E[F_n^3]|, E[F_n^4]-3), where d(F_n,N) = sup |E[h(F_n)] - E[h(N)]|, and h runs over the class of all real functions with a second derivative bounded by 1. This shows that the deterministic sequence max(|E[F_n^3]|, E[F_n^4]-3) completely characterizes the rate of convergence (with respect to smooth distances) in CLTs involving chaotic random variables. These results are used to determine optimal rates of convergence in the Breuer-Major central limit theorem, with specific emphasis on fractional Gaussian noise.
Fichier principal
Vignette du fichier
BBNP.pdf (315.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00620384 , version 1 (07-09-2011)

Identifiants

Citer

Hermine Biermé, Aline Bonami, Ivan Nourdin, Giovanni Peccati. Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2012, 9 (2), pp.473-500. ⟨10.48550/arXiv.1109.1546⟩. ⟨hal-00620384⟩
469 Consultations
139 Téléchargements

Altmetric

Partager

More