A faster algorithm for finding minimum Tucker submatrices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

A faster algorithm for finding minimum Tucker submatrices

Résumé

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. Algorithmic issues of the C1P are central in computa- tional molecular biology, in particular for physical mapping and ances- tral genome reconstruction. In 1972, Tucker gave a characterization of matrices that have the C1P by a set of forbidden submatrices, and a substantial amount of research has been devoted to the problem of ef- ciently nding such a minimum size forbidden submatrix. This paper presents a new O( 3m2 (m + n 3 )) time algorithm for this particular task for a m n binary matrix with at most 1-entries per row, thereby improving the O( 3m2 (mn + n 3 )) time algorithm of Dom et al. [17].
Fichier principal
Vignette du fichier
hal.pdf (595.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00620380 , version 1 (30-09-2011)

Identifiants

  • HAL Id : hal-00620380 , version 1

Citer

Guillaume Blin, Romeo Rizzi, Stéphane Vialette. A faster algorithm for finding minimum Tucker submatrices. 6th Computability in Europe (CiE'10), 2010, Portugal. pp.69-77. ⟨hal-00620380⟩
222 Consultations
414 Téléchargements

Partager

More