Lyndon words with a fixed standard right factor - Archive ouverte HAL
Communication Dans Un Congrès Année : 2004

Lyndon words with a fixed standard right factor

Résumé

Given a totally ordered alphabet A = {a1 < a2 < < aq}, a Lyndon word is a word that is strictly smaller, for the lexicographical order, than any of its conjugates (i.e., all words obtained by a circular permutation on the letters). Lyndon words were introduced by Lyndon [6] under the name of "standard lexicographic sequences" in order to give a base for the free Lie algebra over A. The set of Lyndon words is denoted by L. For instance, with a binary alphabet A = {a, b}, the first Lyndon words until length five are L = {a, b, ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabab, aabbb, ababb, abbbb, . . . }. Note that a non-empty word is a Lyndon word if and only if it is strictly smaller than any of its proper suffixes.
Fichier principal
Vignette du fichier
hal.pdf (76.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00619866 , version 1 (06-10-2011)

Identifiants

  • HAL Id : hal-00619866 , version 1

Citer

Frédérique Bassino, Julien Clément, Cyril Nicaud. Lyndon words with a fixed standard right factor. 15th ACM-SIAM Annual Symposium on Discrete Algorithms (SODA 2004), Jan 2004, New Orleans, Louisiana, United States. pp.646-647. ⟨hal-00619866⟩
128 Consultations
150 Téléchargements

Partager

More