Localization for random Schrödinger operators with low density potentials. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Localization for random Schrödinger operators with low density potentials.

Résumé

We prove that, for a density of disorder $\rho$ small enough, a certain class of discrete random Schrödinger operators on $\Z^d$ with diluted potentials exhibits a Lifschitz behaviour from the bottom of the spectrum up to energies at a distance of the order $\rho^\alpha$ from the bottom of the spectrum, with $\alpha>2(d+1)/d$. This leads to localization for the energies in this zone for these low density models. The same results hold for operators on the continuous, and in particular, with Bernoulli or Poisson random potential.
Fichier principal
Vignette du fichier
paper-bernoulli-poisson.pdf (205.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00618065 , version 1 (21-02-2012)

Identifiants

Citer

Francisco W. Hoecker-Escuti. Localization for random Schrödinger operators with low density potentials.. 2011. ⟨hal-00618065⟩
104 Consultations
289 Téléchargements

Altmetric

Partager

More