Locally identifying colourings for graphs with given maximum degree - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics Année : 2012

Locally identifying colourings for graphs with given maximum degree

Résumé

A proper vertex-colouring of a graph G is said to be locally identifying if for any pair u,v of adjacent vertices with distinct closed neighbourhoods, the sets of colours in the closed neighbourhoods of u and v are different. We show that any graph G has a locally identifying colouring with $2\Delta^2-3\Delta+3$ colours, where $\Delta$ is the maximum degree of G, answering in a positive way a question asked by Esperet et al. We also provide similar results for locally identifying colourings which have the property that the colours in the neighbourhood of each vertex are all different and apply our method to the class of chordal graphs.
Fichier principal
Vignette du fichier
FHLPP11-R1.pdf (132.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00614513 , version 1 (12-08-2011)
hal-00614513 , version 2 (26-01-2012)

Identifiants

Citer

Florent Foucaud, Iiro Honkala, Tero Laihonen, Aline Parreau, Guillem Perarnau. Locally identifying colourings for graphs with given maximum degree. Discrete Mathematics, 2012, 312 (10), pp.1832--1837. ⟨10.1016/j.disc.2012.01.034⟩. ⟨hal-00614513v2⟩
306 Consultations
161 Téléchargements

Altmetric

Partager

More