A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2012

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Résumé

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM). This method allows to perform nite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed on the crack with a discrete multiplier which is the trace on the crack of a nite-element method on the non-cracked domain, avoiding the de nition of a speci c mesh of the crack. Additionally, we present numerical experiments which con rm the e ciency of the proposed method
Fichier principal
Vignette du fichier
contact_xfem26.pdf (1.64 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00606313 , version 1 (06-07-2011)

Identifiants

Citer

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard. A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46, pp.813-839. ⟨10.1051/m2an/2011072⟩. ⟨hal-00606313⟩
230 Consultations
274 Téléchargements

Altmetric

Partager

More