Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator
Résumé
In the dynamics of optical systems, one commonly needs to cope with the problem of coexisting deterministic and stochastic components. The separation of these components is an important, although difficult, task. Often the time scales at which determinism and noise dominate the system's dynamics differ. In this Letter we propose to use information-theory-derived quantifiers, more precisely, permutation entropy and statistical complexity, to distinguish between the two behaviors. Based on experiments of a paradigmatic opto-electronic oscillator, we demonstrate that the time scales at which deterministic or noisy behavior dominate can be identified. Supporting numerical simulations prove the accuracy of this identification.