Chemotaxis: from kinetic equations to aggregate dynamics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Chemotaxis: from kinetic equations to aggregate dynamics

Résumé

The hydrodynamic limit for a kinetic model of chemotaxis is investigated. The limit equation is a non local conservation law, for which finite time blow-up occurs, giving rise to measure-valued solutions and discontinuous velocities. An adaptation of the notion of duality solutions, introduced for linear equations with discontinuous coefficients, leads to an existence result. Uniqueness is obtained through a precise definition of the nonlinear flux as well as the complete dynamics of aggregates, i.e. combinations of Dirac masses. Finally a particle method is used to build an adapted numerical scheme.
Fichier principal
Vignette du fichier
chemohydro.pdf (425.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00605479 , version 1 (01-07-2011)
hal-00605479 , version 2 (04-07-2011)
hal-00605479 , version 3 (02-12-2011)

Identifiants

Citer

François James, Nicolas Vauchelet. Chemotaxis: from kinetic equations to aggregate dynamics. 2011. ⟨hal-00605479v2⟩
524 Consultations
299 Téléchargements

Altmetric

Partager

More