Identifying codes in line graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Identifying codes in line graphs

Sylvain Gravier
Aline Parreau
Petru Valicov

Résumé

An identifying code of a graph is a subset of its vertices such that every vertex of the graph is uniquely identified by the set of its neighbours within the code. We study the edge-identifying code problem, i.e. the identifying code problem in line graphs. If $\ID(G)$ denotes the size of a minimum identifying code of an identifiable graph $G$, we show that the usual bound $\ID(G)\ge \lceil\log_2(n+1)\rceil$, where $n$ denotes the order of $G$, can be improved to $\Theta(\sqrt{n})$ in the class of line graphs. Moreover, this bound is tight. We also prove that the upper bound $\ID(\mathcal{L}(G))\leq 2|V(G)|-5$, where $\mathcal{L}(G)$ is the line graph of $G$, holds (with two exceptions). This implies that a conjecture of R.~Klasing, A.~Kosowski, A.~Raspaud and the first author holds for a subclass of line graphs. Finally, we show that the edge-identifying code problem is NP-complete, even for the class of planar bipartite graphs of maximum degree~3 and arbitrarily large girth.
Fichier principal
Vignette du fichier
LineGraphs.pdf (262.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00605406 , version 1 (01-07-2011)
hal-00605406 , version 2 (21-09-2012)

Identifiants

Citer

Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau, Petru Valicov. Identifying codes in line graphs. 2011. ⟨hal-00605406v1⟩
203 Consultations
312 Téléchargements

Altmetric

Partager

More