Local constancy for the reduction mod p of 2-dimensional crystalline representations - Archive ouverte HAL
Article Dans Une Revue Bulletin of the London Mathematical Society Année : 2012

Local constancy for the reduction mod p of 2-dimensional crystalline representations

Résumé

Irreducible crystalline representations of dimension 2 of Gal(Qpbar/Qp) depend up to twist on two parameters, the weight k and the trace of frobenius a_p. We show that the reduction modulo p of such a representation is a locally constant function of a_p (with an explicit radius) and a locally constant function of the weight k if a_p <> 0. We then give an algorithm for computing the reductions modulo p of these representations. The main ingredient is Fontaine's theory of (phi,Gamma)-modules as well as the theory of Wach modules.

Dates et versions

hal-00605404 , version 1 (01-07-2011)

Identifiants

Citer

Laurent Berger. Local constancy for the reduction mod p of 2-dimensional crystalline representations. Bulletin of the London Mathematical Society, 2012, 44 (3), pp.451-459. ⟨10.1112/blms/bdr105⟩. ⟨hal-00605404⟩
44 Consultations
0 Téléchargements

Altmetric

Partager

More