Riemannian geometry applied to BCI classification - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

Riemannian geometry applied to BCI classification

Abstract

In brain-computer interfaces based on motor imagery, covariance matrices are widely used through spatial filters computation and other signal processing methods. Covariance matrices lie in the space of Symmetric Positives-Definite (SPD) matrices and therefore, fall within the Riemannian geometry domain. Using a differential geometry framework, we propose different algorithms in order to classify covariance matrices in their native space.
Fichier principal
Vignette du fichier
Barachant_LVA_ICA_2010_final.pdf (1.33 Mo) Télécharger le fichier
2010-09_LVA.pdf (2.18 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Other
Loading...

Dates and versions

hal-00602700 , version 1 (23-06-2011)

Identifiers

Cite

Alexandre Barachant, Stephane Bonnet, Marco Congedo, Christian Jutten. Riemannian geometry applied to BCI classification. LVA/ICA 2010 - 9th International Conference on Latent Variable Analysis and Signal Separation, Sep 2010, Saint-Malo, France. pp.629-636, ⟨10.1007/978-3-642-15995-4_78⟩. ⟨hal-00602700⟩
279 View
4006 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More