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The Brain Computer Interface cycle

Goal of signal processing : detect some specific brain activity
within the whole brain activity.
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Covariance Matrices in BCI

The most common way to generate specific brain activity is
motor imagery. For example, imagination of right hand
movement.
Motor imagery induces a spatially localised change in a
specific frequency band.

Figure: 9-13Hz band power change for a right and left hand
movement [2]
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Covariance Matrices in EEG BCI

The spatial covariance matrices of EEG signal are a natural
choice since they contain spatial and power informations.
We denote by E ∈ Rn×t a given mean centred EEG
recording epoch with n electrodes and t samples. The
spatial sample covariance matrix P is given by :

P =
1

t − 1
EET
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Riemannian space

Covariance matrices are Symmetric and Positive Definite
(SPD) matrices.
SPD matrices lie in a Riemannian space with the following
metric (local at P):

ds2 = ‖P−1/2dPP−1/2‖2F

Using a differential geometry framework, we propose
algorithms in order to classify covariance matrices in their
native space.
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Differential geometry framework for SPD matrices

Geodesic between two SPD matrices (P1 and P2):

γ(t) = P1/2
1

(
P−1/2

1 P2P
−1/2
1

)t
P1/2

1

with t ∈ [0 : 1]
Distance between two SPD matrices (P1 and P2):

δR(P1,P2) =

∫ 1

0
γ(t)dt = ‖Log

(
P1
−1P2

)
‖F

Mean of K SPD matrices :

G (P1, . . . ,PK ) = argmin
P∈P(n)

K∑
k=1

δ2R (P,Pk)

No closed form expression, need an iterative algorithm [3].
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Tangent space

Given a point P ∈ P(n), it is possible for every point
Pi ∈ P(n), to identify a tangent vector Si ∈ S(n) such as
Si = γ̇(0) with γ(t) the geodesic between P and Pi .
The whole set of tangent vectors define the Tangent Space,
which is Euclidean.
Log map : Si = LogP(Pi ) = P1/2Log

(
P−1/2PiP−1/2)P1/2

Exp map : Pi = ExpP(Si ) = P1/2Exp
(
P−1/2SiP−1/2)P1/2

Figure: Tangent space of the manifoldM at point P, Si the tangent
vector of Pi and γ(t) the geodesic between P and Pi .
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Minimum Distance to Mean (MDM) classifier

Use Riemann Distance and Geometric mean to classify
covariance matrices.

P1 = G(Pi → ωi = 1)
P2 = G(Pi → ωi = 2)
For a given matrix Px of
unknown class ωx :

ωx = argmin
i

(δR(Px ,Pi ))
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Geodesic filtering and classification in Tangent Space

When previous algorithms are not enough powerful, tangent
space can be used in order to manipulate data (filtering or
classification).
Data are mapped to the tangent space using Logarithmic
map

∀i ,Si = LogP(Pi )

with P the Geometric mean of all data.
Since Tangent space are Euclidean, we can treat the Si as
vectors (taking care of removing symetric elements)

~Si = vect(Si )

.
We can apply classical methods on the ~Si and if necessary,
go back to the Riemannian Space.

~Pi = ExpP(unvect(~Si ))
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Example : Geodesic Filtering with Fisher discriminant
analysis (FGDA)

Using Fisher LDA in tangent space, we apply a geodesic
filtering in order to enhance the discrimination of data.
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Results

Comparison of our methods with an implementation of the
reference method [2]. (fréquential filters, spatial filters and
LDA classification)
Two datasets

Dataset without artefacts : Dataset IVa of BCI competition
III 1. Five subject, 118 electrodes (we use a subset of 9), two
motor imagery classes (right hand and right foot) and 280
trials.
Dataset with artefacts : Our own dataset. 9 users, 16
electrodes, three classes (hand, foot and rest) and 180 trials.

1http://www.bbci.de/competition/iii/
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Results

Competition BCI dataset, classification error rate using
Cross-validation.

User Reference MDM FGDA
aa 26 28.9 22.5
al 3.2 3.9 2.8
av 34.2 39.6 34.2
aw 6.4 11 7.4
ay 7.4 12.1 7.1
Mean 15.5 ± 13.8 19.1 ± 14.7 14.8 ± 13.6

Results are similar to results obtained with the reference
method.
MDM algorithm is very simple but offers good results.
Large inter-subjects variability, a common issue in BCI.
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Our dataset, correct classification rate.
User Reference MDM
UserG 34, 9 55, 0
UserA 48, 3 61, 6
UserH 44, 7 44, 1
UserI 73, 4 76, 0
UserB 50, 0 58, 4
UserJ 38, 5 67, 1
UserK 31, 5 37, 0
UserL 55, 5 58, 7
UserE 65, 4 57, 7
mean 49, 1 57, 3

Results are significantly better than the reference method
(Riemannian methods are robust)
FGDA can not be applied, there is not enough data. 180
trials for a Tangent space of dimension 136 (16 electrodes).
Need regularised FGDA.
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Conclusion

Covariances matrices can be directly classified using a
Riemannian framework.
Distance-based classification methods (MDM, kNN,
k-means, . . . ) can be directly transposed in Riemannian
Space.
More sophisticated methods (LDA, SVM, NN, . . . ) can be
transposed using Tangent Space.
Tangent space is high dimensional (n×(n+1)

2 ), regularisation
is often needed.
No more need of spatial filtering (classical way to use spatial
information in BCI)
Riemannian methods are robust.
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Perspectives

Regularisation in Tangent space.
Dimensional reduction.
Use theses concepts in other kind of BCI.
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