Reproducing kernels for spaces of zero mean functions. Application to sensitivity analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Reproducing kernels for spaces of zero mean functions. Application to sensitivity analysis

Résumé

Given a Reproducing Kernel Hilbert Space (H, h., .i) of real-valued functions and a suitable measure μ over the source space, we decompose H as sum of a subspace of centered functions for μ and its orthogonal in H. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the minimal norm interpolator can be elegantly derived. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.

Domaines

Autres [stat.ML]
Fichier principal
Vignette du fichier
JMA2011.pdf (198.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00601472 , version 1 (17-06-2011)
hal-00601472 , version 2 (07-12-2012)

Identifiants

Citer

Nicolas Durrande, David Ginsbourger, Olivier Roustant, Laurent Carraro. Reproducing kernels for spaces of zero mean functions. Application to sensitivity analysis. 2011. ⟨hal-00601472v1⟩
550 Consultations
741 Téléchargements

Altmetric

Partager

More