On a conjecture about finite fixed points of morphisms - Archive ouverte HAL
Article Dans Une Revue Theoretical Computer Science Année : 2005

On a conjecture about finite fixed points of morphisms

Résumé

A conjecture of M. Billaud is: Given a word w, if, for each letter x occurring in w, the word obtained by erasing all the occurrences of x in w is a fixed point of a nontrivial morphism f_x, then w is also a fixed point of a nontrivial morphism. We prove that this conjecture is equivalent to a similar one on sets of words. Using this equivalence, we solve these conjectures in the particular case where each morphism f_x has only one expansive letter.
Fichier non déposé

Dates et versions

hal-00599741 , version 1 (10-06-2011)

Identifiants

  • HAL Id : hal-00599741 , version 1

Citer

Gwenaël Richomme, Florence Levé. On a conjecture about finite fixed points of morphisms. Theoretical Computer Science, 2005, 339, pp.103-128. ⟨hal-00599741⟩
60 Consultations
0 Téléchargements

Partager

More