Lipschitz stability in an inverse problem for the wave equation - Archive ouverte HAL Access content directly
Reports Year : 2010

Lipschitz stability in an inverse problem for the wave equation

Abstract

We are interested in the inverse problem of the determination of the potential $p(x),~x\in\Omega\subset\mathbb{R}^n$ from the measurement of the normal derivative $\partial_\nu u$ on a suitable part $\Gamma_0$ of the boundary of $\Omega$, where $u$ is the solution of the wave equation $\partial_{tt}u(x,t)-\Delta u(x,t)+p(x)u(x,t)=0$ set in $\Omega\times(0,T)$ and given Dirichlet boundary data. More precisely, we will prove local uniqueness and stability for this inverse problem and the main tool will be a global Carleman estimate, result also interesting by itself.
Fichier principal
Vignette du fichier
CarlemanOndesPbI.pdf (177.92 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00598876 , version 1 (07-06-2011)

Identifiers

Cite

Lucie Baudouin. Lipschitz stability in an inverse problem for the wave equation. 2010. ⟨hal-00598876⟩
339 View
220 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More