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Abstract: We are interested in the inverse problem of the determination of the potential
p(z), x € Q C R™ from the measurement of the normal derivative d,u on a suitable part I'g
of the boundary of 2, where u is the solution of the wave equation dyu(z,t) — Au(z,t) +
p(x)u(z,t) = 0 set in Q x (0,7) and given Dirichlet boundary data. More precisely, we will
prove local uniqueness and stability for this inverse problem and the main tool will be a global
Carleman estimate, result also interesting by itself.
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1 Introduction and main result

Let n € N, T > 0 and let 2 C R" be a bounded domain with C?-boundary 0. Let I'y be an
open subset of 9Q. Throughout this paper, for a functional v = v(x,t) with = € Q, ¢t € (0,7),
we use the following notations :

Ov Ov 8%v " 5% Ov
= (=, 2, D= Av=S"20 -
v (6301’ ’axn>’ Y <axiaxj>1<ij<n’ Y ;axg’ % =p

ov
v € R" denotes the unit outward normal vector to 9Q and 0,v = = Vo - v.
v

We consider the wave equation :

02y(x,t) — Ay(z,t) + q(z)y(z,t) = g(x,t), zeQ, te(0,T),
1), z€dQ, te(0,T), (1)
y(xa 0) = yo(x)a 6159(1” 0) = yl('r)’ z €.

First of all, assuming that y° € L?(Q), y! € H1(Q), p € L>=(Q), h € L?(0Q x (0,T)) and
g € LY(0,T; L%(Q)) are known, and assuming the compatibility condition h(z,0) = yo(z) for
all € 99, the Cauchy problem (1) is well-posed and one can also prove (using a method by
transposition, since we have non-homogeneous boundary conditions) that

u € C([0,T], L*(Q)) nCH([0,T], H ().
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This result can be read in [10] for instance. One will also find a classical existence and regu-
larity result when the boundary data h is equal to 0 in Lemma 1 (see also [9]), useful in the
inverse problem result.

This paper treats at the same time two kinds of inverse problems which can be stated as
follows.

Non linear inverse Problem : Is it possible to retrieve the potential ¢ = ¢(z), = € Q
from measurement of the normal derivative 9,y[p o1y Where y is the solution to (1), I'g is a
part large enough of the boundary 92 and the observation time T is also large enough ?

We will actually give local answer to this question. If we denote by y[p] the weak solution
of equation (1), assuming that p € L*°(2) is a given potential, we are concerned with the
stability around p. That is to say p and y[p| are known while ¢ is unknown and we prove the
following local lipschitz stability result. In this direction, we will answer to two more precise
problems.

Uniqueness : Under geometrical conditions on I'y and T', does the equality d,y[q] = d,y[p]
on Iy x (0,T) imply g =pon Q ?

Stability : Under geometrical conditions on I'g and T, is it possible to estimate |lqg — p||z2(o)
or better, a stronger norm of (p — ¢), by a suitable norm of d,y[q] — d,y[p] on Ty x (0,T) ?

We will actually work on a linearized version of the inverse problem and consider the
following wave equation :

Fu(z,t) — Au(z,t) + g(x)u(z,t) = f(a)R(z,t), x€Q, t€(0,T),
u(z,t) =0, x€d, te(0,T), (2)
u(x,0) =0, Owu(z,0)=0, x € Q.

Linear inverse problem : Is it possible to determine f(z), € Q from the knowledge
of the normal derivative auu|w(0 1y where R and ¢ are given and w is the solution to (2)?

These questions for the wave equation have all already received positive answers since the
uniqueness result for the linear inverse problem has been proved by M.V. KLIBANOV in [8] and
Lipschitz stability results (for both linear and non-linear inverse problems) of M. YAMAMOTO,
deriving from it, can be read in [14]. The proof in [14] is based on a local Carleman estimate
for the wave operator and a compactness-uniqueness argument in order to conclude to the
stability from the uniqueness result and an observability estimate. We aim in our document at
giving a direct proof of a Lipschitz stability estimate from a global Carleman estimate, result
also interesting by itself. Another gain of this new proof of the precise result given below is
the weakened assumptions on the solution of the wave equation under study. Besides, from
the Carleman estimate we prove in the sequel, we directly obtain that a measurement of the
flux of the solution on a suitable part 'y of the boundary (instead of the whole boundary 952)
is sufficient.

To precisely state the results we will prove in this article, we introduce, for m > 0, the set

Zn() ={q € L7(Q), st [lgllLoe() < m}.



Moreover, we also specify the geometrical assumption:

Jxg € Q such that Ty D {z € 9Q; (z — x0) - v(x) > 0} (3)
T > sup |z — zo] 4)
TEQ

Theorem 1. Letm >0, K > 0 and r > 0. Let p belong to LL, (). Assume that the solution
y[p] of equation (1) is such that B

||y[p]||H1(0,T;Loo(Q)) <K (5)
and assume also that the initial datum y° satisfies
inf {|y0($)|,l‘ S (Q)} >, (6)

Under the hypothesis that Ty satisfies the geometrical condition (3) and T satisfies (4), then
for all ¢ € L, (), duylg) — duylp] belongs to H'(0,T; L*(T'y)) and there exists a constant
C =C(m,T,K,r) >0 such that for any q € LZ,.(Q),

dylgl  Oylp]
H o v < Cllp —qllz2(, (7)

‘Hl(O,T;LQ(FU))

lg —pllr2@) <C Hay_[q] _ bl

ov ov )

‘Hl (0,T;L2(Ty)) '

Estimate (8) is the Lispchtiz stability of the inverse problem while (7) gives the continuous
dependance of the derivative of the solution with respect to the potential.

Remark 1. The condition y[p] € H(0,T;L>())) can be guaranteed uniformly for p €
L=, (Q) with more constraints on the data (y°,y'), g, h in (1). Indeed, if we assume (y°,y') €
H?(Q) x HY(Q), g € WH1(0,T; L*(Q)) and h € H?(0,T; H*(Q)), with the compatibility con-
ditions h(z,0) = y°(z) and O;h(z,0) = y'(x) for all x € N then Owy[p] solution of (1)
belongs to the space C°([0,T]; HY(Q)) N CL([0,T]; L3(R)), with estimates depending only on
m and the norms of (y°,y'), g, h in these spaces. Therefore, due to Sobolev’s imbedding,
drylp] € L*(0, T3 L>(9)).

Remark 2. The condition on y° requires compatibility conditions for y° and h on 00 x {0}.
In particular, |h(z,0)| >r >0, x € OQ must be satisfied since |y°(z)| >r >0, ae in Q.

The method of proof of Theorem 1 is based on a global Carleman estimate and is very close
to the approach of [6], that concerns the wave equation with Neumann boundary condition and
Dirichlet observation for the inverse problem of retrieving a potential. Actually, it also closely
follows the approach of [14] but this work requires less regularity conditions on y.

The use of Carleman estimate to prove uniqueness in inverse problems was introduced in [1]
by A. L. Bukhgeim and M. V. Klibanov. Concerning inverse problems for hyperbolic equations
with a single observation, we can refer to [11], [12], where the method relies on uniqueness
results obtained by local Carleman estimates (see e.g. [4], [7]) and compactness-uniqueness
arguments based on observability inequalities (see also [15]). Related references [6] and [5] also
use Carleman estimates, but rather consider the case of interior or Dirichlet boundary data
observation.



2 Classical Global Carleman Estimate

In this section, we are interested in proving a global Carleman estimate for the wave operator.
One can find (local) Carleman estimates for regular functions with compact support in [2], [3]
and in [14].

Let us define the usual wave operator L by
Lv = 8?v — Av
We consider a function v € L*(—T,T; H} (Q)) such that Lv € L?(—T,T; L*(Q)), and satisfying
v(£T) =0, O (£T) =0 on Q.
Let us now define, for g € Q, A > 0 and 8 € (0, 1), and for all (x,t) € Q x (=T,T):
Yl t) = |z — 20| — 2+ Cy  and  @(x,t) = M@ (9)
where Cy > 0 is chosen so that ¢ > 1 on Q x (=T,T). We also set, for s > 0,
w(z,t) = v(z,t)esP@H),
We define the operator L, for p € LZ,, () by
Lyv = 0}v — Av +pv
that satisfies L,v € L?(—T,T; L*(?)) if Lv € L*(=T,T; L*(2)).
Let us first introduce the Carleman estimate we will prove by the formal calculation of
Pw = e**L(e”*%w).
We have easily

Pw = 02w — 2s\p(0wdih — Vw. V) + s* X% w(|0|* — |V|?) — Aw
—show(071 — Ap) — sAow(|0p|* — [Vi[?)
and if we set
Piw = 0w — Aw + s No*w(|0p|* — Vi)
Pow = (o — 1)sApw (029 — Avp) — s 2pw(|0s0|? — |VY|?) — 28 p(0swdpp — Vw.Vap)  (10)
Rw = —as ow(02) — A))

: 2
with a chosen later such that ﬁ% <a< ﬁ% (see (16)), we get

Piw+ Pobw = Pw — Ruw.

Let us now give a global (meaning “up to the boundary”) Carleman inequality, following
Imanuvilov’s method [4]. One can read other versions of global Carleman estimates for hyper-
bolic equations in [15] and [13].

Theorem 2. Let us suppose that there exists xo & Q0 such that

Ty D {z € 0Q;(x — ) - v(z) > 0}



Then for every m > 0, there exists A\g > 0, s > 0 and a constant M = M (sg, Ao, T, m, Q, 5, 20)
such that for all p € LZ, (), and for all A > o, s > so:

T T
s)\/ /625“’(|8tv|2+|Vv|2)dzdt+s3)\3/ /(32‘”’D|v|2 dxdt
—TJQ -TJQ
T T
Jr/ /|P1(es“’v)|2d:cdt+/ /|P2(ewv)|2dzdt (11)
-rJo -1 Ja

T T
< M/ / e?*?|Lyv|* dzdt + Ms)\/ / ©e?*? 10, 0|* dodt.
—-TJQ =T JTo

for allv e HY (=T, T; H}(Q)) satisfying

Lv e L*(Q x (-T,T)),
v(x, £T) = Ow(x,£T) =0, Vo € Q

We do not give here extensive references about Carleman estimates for hyperbolic equations,
but one can have a look at [4] and find references therein.

Remark 3. Estimate (11) is uniform in p when p is in a bounded subset of LZ,, (€2). Moreover,
this Carleman estimate is proved for any arbitrary time T'.

Proof.

We will first prove estimate (11) with Lv in the right hand side instead of L,v. One will
see at the end that the result hold as well for L, since p € L=(Q x (=T,T)).

As we began to write, for w = e*?v we have Pw = e*?Lv and

T T
/ / (|Prw]® + | Pyw]?) dadt + 2/ /lePdezdt
—TJQ —-TJQ

T
:/ /|owRw|2dzdt (12)
—-TJQ

We will calculate and obtain a lower bound for

T
/ / PirwPow dxdt.
T JQ

The main goal of the proof will be indeed to minimize this cross-term by positive and
dominant terms looking similar to the one of the left hand side of (11) and negative boundary
terms that will be moved to the right hand side of the estimate. In the sake of clarity, we will
devide the proof in several steps.

Step 1. Explicit calculations

We set (Pyw, P2w>L2((2><(7T7T)) = Z I; ,, where I;  is the integral of the product of the
i,k=0
tth-term in Pjw and the kth-term in P,w. We mainly use integrations by parts and the prop-
erties of w such as w(xT) =0, dw(£T) =0in Q and w =0 on I x (=T, T).



Integrations by part in time give easily, since ;A = 0,

T
I = / O2w((a — 1)shpw(93p — AY)) dadt
)

T
— 2092,
a O‘)SA/J /leatwl (0 — Av) dadt
1— T
*%SAQ [ ’ [z¢|WI23?w(8?w—A¢) drdt

1— T
7%5/\3 [T/(z 80|w|2|3t7/)|2(3t21/)fA1/1)dzdt

In the same manner, since 9; Vi) = 0, one has

I

T
/ / Pw(— s\ w0 — [Vu|?)) dadt
T JQ
T T
X2 / / D P00 — [V[?) dudt — )2 / / w2 (022 ddt
—T JQ T JQ

1 T sad [T
@ 8 [ [ eluPlowPavdsat+ 2 [ eluPvepoby duds
_T7JQ —-T JQ

X

T
2 2 2 5
2 /_T/QW“' 0e) (|00 — [V|?) dadt

and using also integrations by part in space variable, we get

T
Lis = / 02w (=25 p(Opwd) — Vw. V) dadt
)
T T
= s)\/ /gp|8tw|28t21/)d:cdt+s/\2/ /<p|8tw|2|8t7,/)|2 dxdt
-1 Jo )
T T
+s)\/ /<p|8tw|2A1/)d:cdt+s)\2/ /<p|8tw|2|V1/)|2 dxdt
-1JQ 9

T
725)\2/ /gaﬁtwaﬂ/)Vw.Vw dxdt.
-TJa

We compute in the same way

Iy

T
/ —Aw((a — 1)sApw (029 — Avp)) ddt
-7JQ

T
—(1— a)sA[T/gl@|Vw|2(8fw — Av) dxdt

(170[) 2 T QA 2 —A
gt [ ol avoki - ) dode

(1-a) (7
g an [ [ oIV oRs - Av) dads



and

Iy = /TT | ~ausi oot ~ Vo) ded
- [ ' | evuR ot - 196) dade
B / [ etol (Vo) doat
S” S eluavont - 1vo) arar
SXL ][ el our o - (o) e

—s\3 [T /Qg0|w|2V1/J~V(|V1/)|2)dxdt

Using the fact that w|pox -7,y = 0, we have, on 9Q x (=T,T), Vw = (J,w)v that give
|w|? = |0, w|?. Therefore, we obtain

T
Iys = / /wa(—Qs)\cp((?twati/)wa~V1/))) dzdt
-TJQ
T T
= SA/ /¢|Vw|2(af¢—A¢)dzdt+2s/\2/ /@|V¢~Vw|2dzdt
9 —-rJo
T T
—25)\2/ /cpatw(?thw~V1/)dzdt+s)\2/ /50|Vw|2(|8t1/)|2— |Vep|?) dadt
-TJQ -TJQ

T T
—s)\/ / 0|0, w*V - vdodt + 25)\/ / ©D*|Vw|* dadt
T JoQ —TJQ

since D% is symmetric.
One easily write

I3

T
/ / X2 GPw (0|2 — [VYI?)((a — 1)shpw(02 — Av)) drdt
—T JQ

T
= (a— 1SN [ ) /Q SPlwl2(@2p — AB) (0 — [V[?) dudt

and
T
e = [ [ (0w = V) s\ w00 - Vo) ded

T
- x| /Q P wf2(9pf? — [VYI?)? dadt.
-7



Finally, some integrations by part enable to obtain, since V(|0;]?) = 0,

I33

T
/ / 2N2 2w (|0 |* — |V ?) (=28 Ap(Dywdsap — Vw. V) dadt
T JQ
T
= % [ [ Pl - a6)(0P - Vo) dodt
—-T JQ
T
08 [ [ Pul(e0p0100 P + Vo - V(96 dod
T JQ

T
st [ /Q P w2(9r[2 — [V ) dadt.
T

Gathering all the terms that have been computed, we get

T
/ / PrwPow dxdt
T JQ

T T
= 25)\/ / ©|Opw|? 0%y dedt — as)\/ / ©|0w|? (0F1h — Avp) ddt
—_TJQ T JQ
T
+ 25>\2/ / ¢ (|0w]?|00)? — 200w By Vw - Vi + |V - Vw|?) dadt
-TJo

T T
+ 25)\/ / ©D?*|Vw|* dedt + as)\/ / | Vw|* (0} — Ay) dadt
-1 Jo -TJQ

! 1
5)‘/ / @ |8, w|* Vo - v(x) dodt (13)
L

T
b2t [ PPl - VP2 dade
—T JQ
T
+ s / [ G| (20210002 + Vb - V(T [2)) dadt
-T 2

T
+astn [ ] el R0 - Av)(0wP - (Vo) dod
-1 Jo
+ X3
where X satisfies, using the regularity of 1 and the fact that ¢ > 1 implies A < e*¥ = ¢,
T
| X1 < Ms)\3/ / ©*|w|? dadt. (14)

-1 Ja

Here and in the sequel, M > 0 corresponds to a generic constant depending at least on €2 and
T but independant of s and A.

Step 2. Bounding each term from below
On the one hand, one can notice that

T
25)\2/ / ¢ (|00w]?|0i|? = 20w Vw - Vip + [Vip - Vw|?) dadt
-rJo

T
= 25)\2/ / @ (Oywdyp — Vw - Vip)® dadt > 0. (15)
T JQ



Besides, considering the terms in s\ that must now give the dominant terms in |dyw|? and
|[Vw|? and thus have to be strictly positive, one can guess that we need

2029 — (029 — A) >0 and  2D*) + (9} — Ay) > 0.
This will constrain the value of the unspecified constant o > 0 in the definition (10) of Pow.

We get, by explicit computations, that 8 € (0,1), and o must satisfy

28
6+n<a<ﬁ+n'

As a direct consequence, we can write

(16)

T T
25)\/ /<p|8tw|283wd$dt—asA/ /(p|8tw|2(8t2w—A1/1) dxdt
—-TJQ —-TJQ
T T
+25A/ /apD2w|Vw|2dxdt+as)\/ /¢|Vw|2(a§¢—A¢)dxdt
—TJQ —-TJQ

T T
ZMS)\/ /<p|(')tw|2dxdt+Ms)\/ /np|Vw|2dxdt. (17)
—-TJQ -TJQ

On the other hand, we can observe that:
T
250 [ [ Pl ol - Vo) dod
-TJa
T
508 [ Putl@opoionl + Vo V(0P dade
-TJa

T
1 asi\? / / S lw2(@20 — AB) (0 — [V[?) dudt
-7
T
= 53)\3/ /503|w2|F,\(¢)dzdt
T JQ
where

Fa(9) = 20(1001? — IVYI?)? + 07910001 + Vo - V(IVE) + a(dFy — Ap) (1041 — [Ve])
= 32)\(52152 — |z — z0|2)2 — 16(53152 — |z - x0|2) — 8a(B + n)(ﬂQt2 — |z - x0|2)
= 32\(B%t? — |z — 20|*)? — 8(a(B + n) + 2B)(B*t* — |z — 20]?) + 16(1 — B)|z — x|

Since x¢ ¢ Q, we have 16(1 — )|z — xg|? > ¢, > 0. Therefore, we are considering a polynome
P(X) > 320X% =8 (a(B +n) + 2B) X + ¢, and taking A > 0 large enough, the minimum of P
will be strictly positive. Consequently,

T T
o [ St dede = 258 [ | ded. (1)

Thus, plugging (15), (17) and (18) in (13), we obtain

/ /lePde:cdtJrQs)\/ / @ 0,w|? (z — o) - v(z) dodt — X,
[219]
T
> Ms/\/ / ¢ (10w + |Vw]?) dzdt+M53/\3/ /<,03’|w|2 dzdt.
-1Ja 9



Since we also have

T T T
/ /|Pw—Rw|2dxdt§2/ /|Pw|2dmdt—|—2/ /|Rw|2dxdt
—-TJQ —-TJQ —-TJQ
T T
gM/ /|Pw|2dxdt+M32)\2/ /<p2|w|2dxdt,
T JQ T JQ

T T
8)\/ /(|5tw|2+|Vw|2)<pdxdt+33)\3/ lw|?¢?® dadt
-TJa Q

T
+/ / (|Prwl]? + [Pyw|?) dadt
-TJQ

T T
< M/ |Pw|2dzdt+Ms)\/ / @ 0,w)? (x — x0) - v(a) dodt
-TJQ -1 Joq

T T
+ Ms/\g/ /cpg|w|2dzdt+M52/\2/ /<,02|w|2 dxdt.
-1 Jo 9

We take now s large enough so that the terms of the last line (coming from X; and |Rw|?)
are absorbed by the dominant term in s3A3w|?¢3 as soon as s > s¢. Using also the condition
(3) on Ty, we finally obtain for some positive constant M = M (sg, Ao, m, Q, B, x0),

s)\/ / (|0:w)? + |[Vw|?) dxdt+53)\3/ /cp |w|? dxdt
/ /|P1w|2d:cdt+/ | Pyw|? dxdt (19)
Q

T
< M/ | Pw|? dxdt + Ms/\/ / ©|d,w| dodt
9 —-7.J1,

using (12) and (14), we get

Vs > sg, YA > Ag.

Step 3. Return to the variable v
Using that w = ve®? gives for all z € Q and t € (=T, T)

e??|0pw|? < 2|0;w|? 4 25°|0s0)? |w]?,
e*?|Vol? < 2|Vw|? + 25°| V| |w]?,
e**? 19,0)* = |8, w|> on 9Q

and that by construction Pw = e*?Lv, we can go back to the variable v in (19) and obtain
that there exists some positive constant M = M (sg, Ao, m, 2, 8, 2o) such that for all s > sg

and A > Ao,
T T
s)\/ / e*¢(|opw|* + |Vv|?) dedt + 53)\3/ / e2*¢|v|? dadt
—TJQ T JQ

T T
+ / / Py (e%0) 2 dadt + / / |Py(e%0) 2 dardt (20)
—TJQ T JQ
T T
< M/ /6289”|LU|2dxdt+Ms)\/ / ©e*? |9,0|* dodt.
—rJa —7Jr,

10



It concludes the proof of a Carleman estimate for the operator L = 87 — A.

Step 4. Wave operator with potential
The Carleman estimate (11) for the operator L, = 7 — A+ p with p € LZ,, () is a direct
consequence of (20) noticing that on Q x (=7, T),

|L1}|2 < 2|Lpu|2 + 2||p||L%°m(Q)|U|2 < 2|va|2 + 2m|U|2.

Indeed, choosing sy (or Ag) large enough, one can absorb the term

T
2Mm/ /e2s‘p|v|2dxdt
-rJo

in the left hand side of (20) and obtain (11) with slightly different constants. This ends the
proof of Theorem 2.

3 Stability of the inverse problem

Before giving the proof of Theorem 1, we will begin this section by a stability theorem for the
linear inverse source problem stated after equation (2). The following answer is obtained using
the global Carleman estimate given above.

Theorem 3. Let m >0, K >0 and r > 0. Let q belong to L=, (). Assume that f € L*()
and R € H*(0,T; L*(Q)) with -
|| R 10,1 (00)) < K
and
inf |R(z,0) 2 - (21)
Under the hypothesis that I'g and T satisfy the geometrical conditions

Jrg € Q0 such that To D {x € 0Q;(x —xg) -v(x) >0} and T > supl|z — zo]
TEQ

if u[f] is the solution of equation (2):

O2u(x,t) — Au(x,t) + q(z)u(z, t) = f(x)R(z,t), xeN te(0,T)
u(z,t) =0, z € o, te(0,T)
u(z,0) =0, du(z,0) =0, x € Q,

then there exists a constant C = C(T,Q, T, K,7) > 0 such that for all f € L*(Q) :
Oulf]

C 1l ze(ey < ‘—H
( W g 0,1:02(10))

< O fllz2(@)- (22)

Proof. We will apply the Carleman estimate given by (20) to w = x0:y where x is a cutoff
function to be detailed later. We divide the proof in several steps.

Step 1. Let us first work on the equation satisfied by z = Ju:

02z(x,t) — Az(z,t) + q(z)z(x,t) = f(2)OpR(z, 1), xeQ, te(0,T)
z(x,t) =0, xed, te(0,T) (23)
z2(x,0) =0, 0Oz(x,0) = f(x)R(z,0), x € Q.
We gather in the following lemma the classical energy and trace estimates we will need in the
sequel.

11



Lemma 1. Assume that p € L=, (Q), g € L'(0,T; L*(Q)), u® € H(Q) and u' € L*(Q) and
consider the classical wave equation

02v(z,t) — Av(z, t) + q(x)v(z, t) = g(,t), zeQ, te(0,T)

v(z,t) =0, z€d, te(0,T) (24)

v(x,0) =vo(z), Ow(x,0)=uwv1(x)), x € Q.
The Cauchy problem is well-posed and equation (24) admits a unique weak solution

v e O([0,T], Hy(2)) N CH([0, 7], L*(2))
and there exists a constant C = C(Q,T,m) > 0 such that for all t € (0,T), the energy
E,(t) = ||8tv(t)||2L2(Q) +||Vo(t )||L2(Q) of the system satisfies
Eu(t) < C (I1v0l133 0y + o1l + 19131072200 ) - (25)

Moreover, the normal derivative ,v belongs to L*(0,T; L*(0N2)) and satisfies

< C (Ilvolid e + loalEzqy + 191310, ) - (26)

Hal/

L2(0,T;L2(89))

This result is very classical and we refer to [10] (Chapter 3) for the proof of the existence
and uniqueness of solution to equation (24). Estimate (25) can formally be deduced from
multiplication of (24) by v:, and the integration of this equality on (0,7) x , using some
integrations by parts. Concerning estimate (26), we refer to [9] (Chapter 1). This estimate is
a hidden regularity result which can be obtained by multipliers technique.

We can apply this lemma to equation (23) since f € L?(Q) and R € H(0,T; L>=(Q)). We
denote the energy of the system by

E.(t) = ||Z(t)||?q;(9) + 10211720
and we get z € C([0,T], H}(Q)) N C1([0,T], L*(Q)) with, for all t € (0,T):

E,(t)

IN

CE.(0) + Cl fO: Rl 10 7.12(a))
< ClAIBae (1RO + 1R 0. rizmon ) (27)

and 9,z € L?(0,T; L*(0R2)) with

A

|5 T (LA T A —

VllL2(0,1;L2(89))
This last estimate gives at the end d,u € H(0,T; L?(092)) and proves the right hand side of
the two sided estimate (22). It thus gives a meaning to the measurement of the flux of the

solution u[f] we make in our inverse problem.
Step 2. Let us now extend the problem (23) on (—7,T) in an even way, setting z(z,t) =

z(x,—t) for all (z,t) € Q x (=T,0). We also extend J;R on an even way and keep the same
notations for the new problem. Therefore, we have

2 € C([-T,T], H}(Q)) n CY([-T,T], L*(Q)) and O:R € L*(=T,T; L>=(Q)).
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The goal we have in mind is to apply the Carleman estimate to a solution of the wave
equation in order to be able to estimate a weighted norm of f by a weighted norm of the
measurement, d,u. The solution z could be a good candidate but is not equal to zero at time
+7T'. This motivates the use of a cutoff function in time, that is calibrated to work well with
the Carleman weight function .

We recall that for 5 € (0,1), ¢ and ¢ are defined by (9). Since T satisfies (4), one can choose
8 such that BT? > sup,cq, |z —zo|? so that for all z € Q, ¥ (z, £T) = |z —xo|* = BT*+Cy < Cy.
We then choose 1 > 0 such that

Y(z,t) < Co,  Y(z,t) € Ux [-T,-T +n]U[T —n,T].
Besides, one observes that
Y(z,0) = |z — 20|* + Co > Cy, Vo €.
Therefore, for all (x,t) € Q@ x [T, -T +n| U [T —n,T],
o(z,t) < X0 < M@0 = (g 0) (28)

but we also have, for all (z,t) € Q x [-T,T],

p(@,t) < o(2,0). (29)
Using the parameter n introduced here, we define the cut-off function x € C*°(R;]0,1])
such that
X(ET) =X'(£T) =0 (30)
x(t) =1 Vte [-T+n,T —n]

and we set v = yz that satisfies the following equation:

020 — Av+qu=xfOR+ X"z 42X 0,2, Q% (0,7)
v(z,t) =0, zedf, te(0,T) (31)
v(z,0) =0, Ow(x,0)= f(x)R(x,0), x €.

Henceforth, M > 0 will correspond to a generic constant depending on sg, Ao, T, 2, Ty, 5,
X, r, K, and 1 but independent of s > sg.

Step 3. We use now the same notations as in the proof of the Carleman estimate. For v
solution of (31), we set

w=ev, Piw= 0w — Aw + s*X2p*w(|0y]* — |Vy|?),
and we then have for all z € Q, w(z,£T) = dw(z,£T) = 0 and w(z,0) = 0 and for all

(x,t) € 0 x (=T,T), w(x,t) = 0.
Inspired from an idea of O. Yu. Imanuvilov and M. Yamamoto [6], we consider the integral

0
/ / Pyw(z,t) Opw(x, t) dzdt.
)

13



On the one hand, using the properties of w, we can make the following calculation:

0
/ / Prw 0yw dxdt
-rJa

0
/ / (07w — Aw + *N2p*w (|0 > — |VY|?)) dyw dadt
-rJo

$2A2

_ 1 2 9. 0 2 2 2 2
= 3 [ owode == [ o, (0P ~ (90 dade

1 0
= 5/ If?tw<0)l2d:c—2s2A2/ /|w|26t (¢*(B** — |z — o|?)) dadt
Q —-TJQ

1 O
_ 5/6289”(0)|fR(0)|2dx+852)\3/ /|w|2<p26t(ﬁ2t2—|x—x0|2)dxdt
Q —-T JQ

0
- 432)\2/ /Q|w|2<,02ﬁ2t.
-7

On the other hand, from this equality and a Cauchy-Schwarz estimate,

0 0
2/ /leatwd:cdt+852)\2/ /w2g02ﬁ2tdxdt
—rJa -rJa

0
—1652)\3/ / |w|?@?Bt(B*t? — |x — x0|?) dadt
-7JQ

0 3 0 3
2 (/ / |Pywl® dmdt) (/ / |6tw|2dxdt)
—-TJQ —-TJQ

0
+M32)\3/ /Q|w|2<p2yﬁt(52t2—|x—x0|2)\ dedt. (32)
-T

/ ¢220)| £ R(0)[2 dar
Q

IN

Using now the ‘intermediate” Carleman estimate (19) for a fixed A > ¢ not mentioned any-
more, choosing s large enough to absorb the last term in the right hand side (32), we obtain

/ > fR(0)|? da
Q

0 3 0 3 T
% (/ |Pywl|? dmdt) (s/ |8tw|2dacdt) +M32)\3/ |w|?? dedt
-7JQ -7JQ -1 Ja
M T T
— </ | Pw|? dxdt + s/ / <p|8,,w|2dodt>
Vs \Jor Ja —-7J1,
M T T
< —= </ / e**?| Lo|* dadt + s/ / 625‘P|8yv|2dodt> (33)
Vs \JorJa —-7J1,

the weight function ¢ being bounded from above and below.

IN
»

IN
»

V2]

From equation (31) and the properties (30) of the cut-off function x and that of the weight
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¢ given in (28) and (29), one gets that

/ / | Lo|? dxdt

T
< M/ /628”|Xf8tR|2d$dt+M/ /625“’ (X' 0uz” + [X"2|?) dwdt
—TJQ —-TJQ
T ~T4n T
< M/ /625”|f|2|8tR|2d:cdt+M / Jr/ /625"’ (10s2|* + |2]?) dadt
—_TJQ -T T—n Q
T —T+n T oo
< M/ /e2w<0>|f|2|atR|2dxdt+M / +/ /6256 (19022 + |2%) dadt
-rJo -7 T-n) Jo
<

M9 R| 2170 2 /Q 22O f12 i

25e2C0 —rn ’ 2 2
+ Me + (|0:2> + |2]?) dzdt.
-T T—n Q

Using the energy estimate given in (27), and again the property (28) of the weight ¢, one gets

T o —T4n T
/ /62W|Lv|2dxdt < M/em<°>|f|2d:c+Me2“ ’ / +/ E.(t)dt
-rJa Q -7 T—q
< M/625¢(0)|f|2d$
Q
M (RO + R0 r000ca) 2 [ 17 do
<

M/625¢(0)|f|2d:c.
Q

Gathering this last estimate with (33), we have proved

, M , T ,
/ 2O FR(0)[>da < == / 22O f12 de + M+/s / / e*%10,v|? dodt.
Q \/g Q —T JTy

Therefore, the assumption (21) made on R allow to obtain

M T
/ 2P O) | fI12 da < —/ 625"’(0)|f|2dz+M\/§/ / e**?|0,v|? dodt,
Q Vs Ja -7 JTy

and the choice of s large enough gives

/ e2s<p(0)|f|2 dr
Q

IN

T

M\/E/ / e**?|0,v|? dodt
—7JT,
T

M\/g/ / e*?|0, (0pu)|* dodt.
~7J1,

IN

The proof of Theorem 3 is then complete.
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