Bounds and complexity results for strong edge colouring of subcubic graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Bounds and complexity results for strong edge colouring of subcubic graphs

Résumé

A strong edge colouring of a graph $G$ is a proper edge colouring such that every path of length 3 uses three colours. In this paper, we give some upper bounds for the minimum number of colours in a strong edge colouring of subcubic graphs as a function of the maximum average degree. We also prove the NP-completeness of the strong edge $k$-colouring problem for some restricted classes of subcubic planar graphs when $k=4,5,6$.
Fichier principal
Vignette du fichier
abstract.pdf (210.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00592130 , version 1 (11-05-2011)

Identifiants

  • HAL Id : hal-00592130 , version 1

Citer

Hervé Hocquard, Pascal Ochem, Petru Valicov. Bounds and complexity results for strong edge colouring of subcubic graphs. EuroComb'11, Aug 2011, Budapest, Hungary. A paraitre. ⟨hal-00592130⟩
115 Consultations
477 Téléchargements

Partager

More