Strong solutions for a phase field Navier-Stokes vesicle-fluid interaction model
Résumé
In this paper we study a mathematical model for the dynamics of vesicle membranes in a 3D incompressible viscous fluid. The system is in the Eulerian formulation, involving the coupling of the incompressible Navier-Stokes system with a phase field equation. This equation models the vesicle deformations under external flow fields. We prove the local in time existence and uniqueness of strong solutions. Moreover, we show that, given T > 0, for initial data which are small (in terms of T), these solutions are defined on [0, T] (almost global existence).