On the algebraic numbers computable by some generalized Ehrenfest urns - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2012

On the algebraic numbers computable by some generalized Ehrenfest urns

Résumé

This article deals with some stochastic population protocols, motivated by theoretical aspects of distributed computing. We modelize the problem by a large urn of black and white balls from which at every time unit a fixed number of balls are drawn and their colors are changed according to the number of black balls among them. When the time and the number of balls both tend to infinity the proportion of black balls converges to an algebraic number. We prove that, surprisingly enough, not every algebraic number can be ''computed'' this way.
Fichier principal
Vignette du fichier
4077.pdf (590.22 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00589621 , version 1 (29-04-2011)
hal-00589621 , version 2 (05-12-2012)
hal-00589621 , version 3 (03-07-2017)

Licence

Identifiants

Citer

Marie Albenque, Lucas Gerin. On the algebraic numbers computable by some generalized Ehrenfest urns. Discrete Mathematics and Theoretical Computer Science, 2012, 14 (2), pp.271-284. ⟨hal-00589621v3⟩
607 Consultations
910 Téléchargements

Altmetric

Partager

More