Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Circuits and Systems Année : 2011

Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices

J.M. Retrouvey
  • Fonction : Auteur
G. Agnus
  • Fonction : Auteur
W. Zhao
  • Fonction : Auteur
D. Chabi
  • Fonction : Auteur
A. Filoramo
  • Fonction : Auteur
Vincent Derycke
C. Gamrat
  • Fonction : Auteur
J.O. Klein
  • Fonction : Auteur

Résumé

We present an original method to implement neuro-inspired supervised learning for a synaptic array based on carbon nanotube devices. The device characteristics required to implement on chip learning within a crossbar of carbon nanotube field effect transistors (CNTFETs) as synaptic arrays were experimentally demonstrated and accurately modeled through a specific electrical compact model. We performed electrical simulations of learning for an array of 24 nanotube memory devices corresponding to a 3 input × 3 output neural layer that revealed successful learning of separable logic functions within very few epochs, even when a realistic variability of nanotube diameter was taken into account. Such a learning approach opens the way to the use of high-density synaptic arrays as generic logic blocks in configurable circuits.

Domaines

Electronique
Fichier non déposé

Dates et versions

hal-00584909 , version 1 (11-04-2011)

Identifiants

  • HAL Id : hal-00584909 , version 1

Citer

Si-Yu Liao, J.M. Retrouvey, G. Agnus, W. Zhao, Cristell Maneux, et al.. Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices. IEEE Transactions on Circuits and Systems, 2011, pp.1. ⟨hal-00584909⟩
53 Consultations
0 Téléchargements

Partager

More