Adaptive pointwise estimation for pure jump Lévy processes - Archive ouverte HAL
Journal Articles Statistical Inference for Stochastic Processes Year : 2015

Adaptive pointwise estimation for pure jump Lévy processes

Mélina Bec
  • Function : Author
  • PersonId : 898555
Claire Lacour

Abstract

This paper is concerned with adaptive kernel estimation of the Lévy density N(x) for bounded-variation pure-jump Lévy processes. The sample path is observed at n discrete instants in the "high frequency" context (∆ = ∆(n) tends to zero while n\Delta tends to infinity). We construct a collection of kernel estimators of the function g(x)=xN(x) and propose a method of local adaptive selection of the bandwidth. We provide an oracle inequality and a rate of convergence for the quadratic pointwise risk. This rate is proved to be the optimal minimax rate. We give examples and simulation results for processes fitting in our framework. We also consider the case of irregular sampling.
Fichier principal
Vignette du fichier
Levyponctuel_sept14.pdf (546.29 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00583221 , version 1 (05-04-2011)
hal-00583221 , version 2 (21-05-2012)
hal-00583221 , version 3 (12-02-2013)
hal-00583221 , version 4 (12-05-2022)

Identifiers

Cite

Mélina Bec, Claire Lacour. Adaptive pointwise estimation for pure jump Lévy processes. Statistical Inference for Stochastic Processes, 2015, 18 (3), pp.229-256. ⟨10.1007/s11203-014-9113-6⟩. ⟨hal-00583221v4⟩
464 View
439 Download

Altmetric

Share

More