Evolving Fuzzy Classifiers: Application to Incremental Learning of Handwritten Gesture Recognition Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Evolving Fuzzy Classifiers: Application to Incremental Learning of Handwritten Gesture Recognition Systems

Résumé

In this paper, we present a new method to design customizable self-evolving fuzzy rule-based classifiers. The presented approach combines an incremental clustering algorithm with a fuzzy adaptation method in order to learn and maintain the model. We use this method to build an evolving handwritten gesture recognition system. The self-adaptive nature of this system allows it to start its learning process with few learning data, to continuously adapt and evolve according to any new data, and to remain robust when introducing a new unseen class at any moment in the life-long learning process.
Fichier principal
Vignette du fichier
almaksour10evolving.pdf (222.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00582438 , version 1 (01-04-2011)

Identifiants

  • HAL Id : hal-00582438 , version 1

Citer

Abdullah Almaksour, Eric Anquetil, Solen Quiniou, Mohamed Cheriet. Evolving Fuzzy Classifiers: Application to Incremental Learning of Handwritten Gesture Recognition Systems. International Conference on Pattern Recognition (ICPR), Aug 2010, Istanbul, Turkey. pp.4056-4059. ⟨hal-00582438⟩
182 Consultations
259 Téléchargements

Partager

More