Wave and Klein-Gordon equations on hyperbolic spaces - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2014

Wave and Klein-Gordon equations on hyperbolic spaces

Résumé

We consider the Klein--Gordon equation associated with the Laplace--Beltrami operator $\Delta$ on real hyperbolic spaces of dimension $n\!\ge\!2$; as $\Delta$ has a spectral gap, the wave equation is a particular case of our study. After a careful kernel analysis, we obtain dispersive and Strichartz estimates for a large family of admissible couples. As an application, we prove global well--posedness results for the corresponding semilinear equation with low regularity data.
Fichier principal
Vignette du fichier
KGhyp.pdf (361.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00581773 , version 1 (31-03-2011)
hal-00581773 , version 2 (06-07-2013)

Identifiants

Citer

Jean-Philippe Anker, Vittoria Pierfelice. Wave and Klein-Gordon equations on hyperbolic spaces. Analysis & PDE, 2014, 7 (4), pp.953-995. ⟨10.2140/apde.2014.7.953⟩. ⟨hal-00581773v2⟩
199 Consultations
373 Téléchargements

Altmetric

Partager

More