Dynamics of lambda-continued fractions and beta-shifts - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2013

Dynamics of lambda-continued fractions and beta-shifts

Résumé

For a real number $0<\lambda<2$, we introduce a transformation $T_\lambda$ naturally associated to expansion in $\lambda$-continued fraction, for which we also give a geometrical interpretation. The symbolic coding of the orbits of $T_\lambda$ provides an algorithm to expand any positive real number in lambda-continued fraction. We prove the conjugacy between $T_\lambda$ and some beta-shift, $\beta>1$. Some properties of the map $\lambda\mapsto\beta(\lambda)$ are established: It is increasing and continuous from ]0, 2[ onto ]1,\infty[ but non-analytic.
Fichier principal
Vignette du fichier
lambda_beta.pdf (313.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00581694 , version 1 (31-03-2011)

Identifiants

Citer

Elise Janvresse, Benoît Rittaud, Thierry de La Rue. Dynamics of lambda-continued fractions and beta-shifts. Discrete and Continuous Dynamical Systems - Series A, 2013, 33 (4), pp.1477-1498. ⟨hal-00581694⟩
396 Consultations
163 Téléchargements

Altmetric

Partager

More