Propagation of Singularities of Nonlinear Heat Flow in Fissured Media - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Propagation of Singularities of Nonlinear Heat Flow in Fissured Media

Résumé

In this paper we investigate the propagation of singularities in a nonlinear parabolic equation with strong absorption when the absorption potential is strongly degenerate following some curve in the $(x,t)$ space. As a very simplified model, we assume that the heat conduction is constant but the absorption of the media depends stronly of the characteristic of the media. More precisely we suppose that the temperature $u$ is governed by the following equation \begin{equation}\label{I-1} \partial_{t}u-\Delta u+h(x,t)u^p=0\quad \text{in }Q_{T}:=R^N\times (0,T) \end{equation} where $p>1$ and $h\in C(\overline Q_{T})$. We suppose that $h(x,t)>0$ except when $(x,t)$ belongs to some space-time curve.
Fichier principal
Vignette du fichier
Propagation-S7.pdf (170.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00581042 , version 1 (30-03-2011)

Identifiants

Citer

Andrey Shishkov, Laurent Veron. Propagation of Singularities of Nonlinear Heat Flow in Fissured Media. 2011. ⟨hal-00581042⟩
117 Consultations
123 Téléchargements

Altmetric

Partager

More