The homological torsion of PSL_2 of the imaginary quadratic integers - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2012

The homological torsion of PSL_2 of the imaginary quadratic integers

Alexander Rahm

Résumé

Denote by Q(sqrt{-m}), with m a square-free positive integer, an imaginary quadratic number field, and by A its ring of integers. The Bianchi groups are the groups SL_2(A). We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We expose a novel technique, the torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups. Furthermore, this correspondence facilitates the computation of the equivariant K-homology of the Bianchi groups. By the Baum/Connes conjecture, which is verified by the Bianchi groups, we obtain the K-theory of their reduced C*-algebras in terms of isomorphic images of their equivariant K-homology.
Fichier principal
Vignette du fichier
homological_torsion.pdf (383.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00578383 , version 1 (19-03-2011)
hal-00578383 , version 2 (04-04-2011)
hal-00578383 , version 3 (19-08-2011)
hal-00578383 , version 4 (24-07-2012)

Identifiants

Citer

Alexander Rahm. The homological torsion of PSL_2 of the imaginary quadratic integers. Transactions of the American Mathematical Society, 2012, 365, pp.1603-1635. ⟨10.1090/S0002-9947-2012-05690-X⟩. ⟨hal-00578383v4⟩
211 Consultations
247 Téléchargements

Altmetric

Partager

More