Chebyshev approximation of the null function by an affine combination of complex exponential functions - Archive ouverte HAL
Article Dans Une Revue Journal of Approximation Theory Année : 2010

Chebyshev approximation of the null function by an affine combination of complex exponential functions

Paul Armand
DMI
Joël Benoist
  • Fonction : Auteur
  • PersonId : 918089
DMI
Elsa Bousquet
  • Fonction : Auteur
DMI

Résumé

We describe the theoretical solution of an approximation problem that uses a finite weighted sum of complex exponential functions. The problem arises in an optimization model for the design of a telescope array occurring within optical interferometry for direct imaging in astronomy. The problem is to find the optimal weights and the optimal positions of a regularly spaced array of aligned telescopes, so that the resulting interference function approximates the zero function on a given interval. The solution is given by means of Chebyshev polynomials.

Dates et versions

hal-00567780 , version 1 (21-02-2011)

Identifiants

Citer

Paul Armand, Joël Benoist, Elsa Bousquet. Chebyshev approximation of the null function by an affine combination of complex exponential functions. Journal of Approximation Theory, 2010, 162 (11), pp.2004 - 2020. ⟨10.1016/j.jat.2010.06.005⟩. ⟨hal-00567780⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

More