On the problem of Molluzzo for the modulus 4 - Archive ouverte HAL Access content directly
Journal Articles Integers : Electronic Journal of Combinatorial Number Theory Year : 2012

On the problem of Molluzzo for the modulus 4

Abstract

We solve the currently smallest open case in the 1976 problem of Molluzzo on $\mathbb{Z}/m\mathbb{Z}$, namely the case $m=4$. This amounts to constructing, for all positive integer $n$ congruent to $0$ or $7 \bmod{8}$, a sequence of integers modulo $4$ of length $n$ generating, by Pascal's rule, a Steinhaus triangle containing $0,1,2,3$ with equal multiplicities.
Fichier principal
Vignette du fichier
Molluzzo_mod4_Final_Version.pdf (128.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00564817 , version 1 (10-02-2011)
hal-00564817 , version 2 (29-03-2016)

Identifiers

Cite

Jonathan Chappelon, Shalom Eliahou. On the problem of Molluzzo for the modulus 4. Integers : Electronic Journal of Combinatorial Number Theory, 2012, 12, pp.A18. ⟨10.1515/integers-2012-0001⟩. ⟨hal-00564817v2⟩
158 View
135 Download

Altmetric

Share

Gmail Facebook X LinkedIn More